
A Chasm Between Identity and Equivalence Testing with
Conditional Queries

Jayadev Acharya∗ Clément L. Canonne† Gautam Kamath‡

April 18, 2015

Abstract

A recent model for property testing of probability distributions [CFGM13, CRS15] enables
tremendous savings in the sample complexity of testing algorithms, by allowing them to condi-
tion the sampling on subsets of the domain.

In particular, Canonne, Ron, and Servedio [CRS15] showed that, in this setting, testing
identity of an unknown distribution D (i.e., whether D = D∗ for an explicitly known D∗) can
be done with a constant number of samples, independent of the support size n – in contrast
to the required

√
n in the standard sampling model. However, it was unclear whether the

same held for the case of testing equivalence, where both distributions are unknown. Indeed,
while Canonne, Ron, and Servedio [CRS15] established a polylog(n)-query upper bound for
equivalence testing, very recently brought down to Õ(log logn) by Falahatgar et al. [FJO+15],
whether a dependence on the domain size n is necessary was still open, and explicitly posed
by Fischer at the Bertinoro Workshop on Sublinear Algorithms [Sublinear.info, Problem 66].
In this work, we answer the question in the positive, showing that any testing algorithm for
equivalence must make Ω

(√
log logn

)
queries in the conditional sampling model. Interestingly,

this demonstrates an intrinsic qualitative gap between identity and equivalence testing, absent
in the standard sampling model (where both problems have sampling complexity nΘ(1)).

Turning to another question, we investigate the complexity of support size estimation. We
provide a doubly-logarithmic upper bound for the adaptive version of this problem, generalizing
work of Ron and Tsur [RT14] to our weaker model. We also establish a logarithmic lower
bound for the non-adaptive version of this problem. This latter result carries on to the related
problem of non-adaptive uniformity testing, an exponential improvement over previous results
that resolves an open question of Chakraborty, Fischer, Goldhirsh, and Matsliah [CFGM13].

∗EECS, MIT. Email: jayadev@csail.mit.edu. Research supported by grant from MITEI-Shell program.
†Columbia University. Email: ccanonne@cs.columbia.edu. Research supported by NSF CCF-1115703 and NSF

CCF-1319788.
‡EECS, MIT. Email: g@csail.mit.edu.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 156 (2014)

mailto:jayadev@csail.mit.edu
mailto:ccanonne@cs.columbia.edu
mailto:g@csail.mit.edu

1 Introduction
“No, Virginia, there is no constant-query tester.”

Understanding properties and characteristics of an unknown probability distribution is a fun-
damental problem in statistics, and one that has been thoroughly studied. However, it is only since
the seminal work of Goldreich and Ron [GR00] and Batu et al. [BFR+00] that the problem has
been considered through the lens of theoretical computer science, more particularly in the setting
of property testing.

Over the following decade, a flurry of subsequent work explored and delved into this new area,
resulting in a better and often complete understanding of a number of questions in distributional
property testing (see e.g. [GR00, BFF+01, BKR04, Pan08, RS09, ADJ+11, BFRV11, Rub12, ILR12,
ADJ+12, CDVV14, VV14] or [Can15] for a survey). In many cases, these culminated in provably
sample-optimal algorithms. However, the standard setting of distribution testing, where one only
obtains independent samples from an unknown distribution D, does not encompass all scenarios
one may encounter. In recent years, stronger models have thus been proposed to capture more
specific situations [GMV06, CFGM13, CRS15, LRR13, CR14]: among these is the conditional
oracle model [CFGM13, CRS15] which will be the focus of our work. In this setting, the testing
algorithms are given the ability to sample from conditional distributions: that is, to specify a
subset S of the domain and obtain samples from DS , the distribution induced by D on S (the
formal definition of the model can be found in Definition 2.1). In particular, the hope is that
allowing algorithms to have stronger interactions with the unknown underlying distributions might
significantly reduce the number of samples they need, thereby sidestepping the strong lower bounds
that hold in the standard sampling model.

1.1 Background and previous work

We focus in this paper on proving lower bounds for testing two extremely natural properties of
distributions, namely equivalence testing (“are these two datasets identically distributed?”) and
support size estimation (“how many different outcomes can actually be observed?”). Along the
way, we use some of the techniques we develop to obtain an upper bound on the query complexity
of the latter. We state below the informal definition of these two problems, along with closely
related ones (uniformity and identity testing). Hereafter, “oracle access” to a distribution D over
[n] = {1, . . . , n} means access to samples generated independently from D.

Uniformity testing: granted oracle access to D, decide whether D = U (the uniform distribution
on [n]) or is far from it;

Identity testing: granted oracle access to D and the full description of a fixed D∗, decide whether
D = D∗ or is far from it;

Equivalence (closeness) testing: granted independent oracle accesses to D1, D2 (both un-
known), decide whether D1 = D2 or D1, D2 are far from each other.

Support size estimation: granted oracle access to D, output an estimate of the size of the
support1 supp(D) ={ x : D(x) > 0 }, accurate within a multiplicative factor.

1For this problem, it is typically assumed that all points in the support have probability mass at least Ω(1)/n, as
without such guarantee it becomes impossible to give any non-trivial estimate (consider for instance a distribution
D such that D(i) ∝ 1/2in).

1

It is not difficult to see that each of the first three problems generalizes the previous, and is therefore
at least as hard. All of these tasks are known to require sample complexity nΩ(1) in the standard
sampling model (SAMP); yet, as prior work [CFGM13, CRS15] shows, their complexity decreases
tremendously when one allows the stronger type of access to the distribution(s) provided by a
conditional sampling oracle (COND). For the problems of uniformity testing and identity testing,
the sample complexity even becomes a constant provided the testing algorithm is allowed to be
adaptive (i.e. when the next queries it makes can depend on the samples it previously obtained).

Testing uniformity and identity. Given the complete description of a distribution D∗ over
[n], a parameter ε > 0, and oracle access to a distribution D, identity testing asks to distinguish
the case D1 = D∗ from where their total variation distance dTV(D,D∗) is at least ε. This is a
generalization of uniformity testing, where D∗ is taken to be the uniform distribution over [n]. The
complexity of these tasks is well-understood in the sampling model; in particular, it is known that
for both uniformity and identity testing Θ

(√
n/ε2) samples are necessary and sufficient (see [GR00,

BFR+10, Pan08, VV14] for the tight bounds on these problems).
The uniformity testing problem emphasizes the additional flexibility granted by conditional

sampling: as Canonne, Ron, and Servedio [CRS15] showed, in this setting only Õ
(
1/ε2) adaptive

queries now suffice (and this is optimal, up to logarithmic factors). They further prove that identity
testing has constant sample complexity as well, namely Õ

(
1/ε4) – very recently improved to a near-

optimal Õ
(
1/ε2) by Falahatgar et al. [FJO+15]. The power of the COND model is evident from the

fact that a task requiring polynomially many samples in the standard model can now be achieved
with a number of samples independent of the domain size n.

Focusing on the case of non-adaptive algorithms, Chakraborty et al. [CFGM13] describe a
poly(logn, 1/ε)-query tester for uniformity, showing that even without the full power of conditional
queries one can still get an exponential improvement over the standard sampling setting. They also
obtain an Ω(log logn) lower bound for this problem, and leave open the possibility of improving this
lower bound up to a logarithmic dependence. The present work answers this question, establishing
that any non-adaptive uniformity tester must perform Ω(logn) conditional queries.

Testing equivalence. A natural generalization of these two testing problems is the question of
equivalence testing, defined as follows. Given oracle access to two unknown distributions D1 and D2
over [n] and a parameter ε > 0, equivalence testing asks to distinguish between the cases D1 = D2
and dTV(D1, D2) > ε. This problem has been extensively studied over the past decade, and its
sample complexity is now known to be Θ(max(n2/3/ε4/3,

√
n/ε2)) in the sampling model [BFR+10,

Val11, CDVV14].
In the COND setting, Canonne, Ron, and Servedio showed that equivalence testing is possible

with only poly(logn, 1/ε) queries. Concurrent to our work, Falahatgar et al. [FJO+15] brought this
upper bound down to Õ

(
(log logn)/ε5), a doubly exponential improvement over the nΩ(1) samples

needed in the standard sampling model. However, these results still left open the possibility of a
constant query complexity: given that both uniformity and identity testing admit constant-query
testers, it is natural to wonder where equivalence testing lies2.

2It is worth noting that an Ω(logc n) lower bound was known for equivalence testing in a weaker version of
the conditional oracle, PAIRCOND (where the tester’s queries are restricted to being either [n] or subsets of size
2 [CRS15]).

2

This question was explicitly posed by Fischer at the Bertinoro Workshop on Sublinear Algo-
rithms 2014 [Sublinear.info, Problem 66]: in this paper, we make decisive progress in answering
it, ruling out the possibility of any constant-query tester for equivalence. Along with the upper
bound of Falahatgar et al. [FJO+15], our results essentially settle the dependence on the domain
size, showing that (log logn)Θ(1) samples are both necessary and sufficient.

Support size estimation. Finally, the question of approximating the support size of a distri-
bution has been considered by Raskhodnikova et al. [RRSS09], where it was shown that obtaining
additive estimates requires sample complexity almost linear in n. Subsequent work by Valiant
and Valiant [VV11, VV10a] settles the question, establishing that an n/ logn dependence is both
necessary and sufficient. Note that the proof of their lower bound translates to multiplicative
approximations as well, as they rely on the hardness of distinguishing a distribution with support
s ≤ n from a distribution with support s+εn ≥ (1+ε)s. To the best of our knowledge, the question
of getting a multiplicative-factor estimate of the support size of a distribution given conditional
sampling access has not been previously considered. We provide upper and lower bounds for both
the adaptive and non-adaptive versions of this problem.

1.2 Our results

In this work, we make significant progress in each of the problems introduced in the previous
section, yielding a better understanding of their intrinsic query complexities. We prove four results
pertaining to the sample complexity of equivalence testing, support size estimation, and uniformity
testing in the COND framework.

Problem COND model Standard model
Are D1, D2 (both unknown)

equivalent? (adaptive)
Õ
(

log logn
ε5

)
[FJO+15] Θ

(
max

(
n2/3

ε4/3
, n

1/2

ε2

))
[CDVV14]

Ω
(√

log logn
)

[this work]
What is the support size of

D? (adaptive)
Õ
(

log logn
ε3

)
[this work]

Θ
(

n
logn

)
[VV10a]Ω

(√
log logn

)
[CFGM13] (†)

What is the support size of
D? (non-adaptive)

O(poly(logn, 1/ε)) [this work]
Ω(logn) [this work]

Is D uniform over the
domain? (non-adaptive)

Õ
(

log5 n
ε6

)
[CFGM13] Θ

(√
n
ε2

)
[GR00, BFR+10, Pan08]

Ω(logn) [this work]

Table 1: Summary of results. Note that the lower bound (†) can also be easily derived from our
lower bound on testing equivalence.

Our main result considers the sample complexity of testing equivalence with adaptive queries
under the COND model, resolving in the negative the question of whether constant-query complexity
was achievable [Sublinear.info, Problem 66]. More precisely, we prove the following theorem:

Theorem 1.1 (Testing Equivalence). Any adaptive algorithm which, given COND access to un-
known distributions D1, D2 on [n], distinguishes with probability at least 2/3 between (a) D1 = D2
and (b) dTV(D1, D2) ≥ 1

4 , must have query complexity Ω
(√

log logn
)
.

3

Combined with the recent Õ(log logn) upper bound of Falahatgar et al. [FJO+15], this almost
settles the sample complexity of this question. Furthermore, as the related task of identity test-
ing can be performed with a constant number of queries in the conditional sampling model, this
demonstrates an intriguing and intrinsic difference between the two problems. Our result can also
be interpreted as showing a fundamental distinction from the usual sampling model, where both
identity and equivalence testing have polynomial sample complexity.

Next, we establish a logarithmic lower bound on non-adaptive support size estimation, for any
factor larger than a fixed constant. This improves on the result of Chakraborty et al. [CFGM13],
which gave a doubly logarithmic lower bound for constant factor support-size estimation.

Theorem 1.2 (Non-Adaptive Support Size Estimation). Any non-adaptive algorithm which, given
COND access to an unknown distribution D on [n], estimates the size of its support up to a factor
γ must have query complexity Ω

(
logn
log γ

)
, for any γ ≥

√
2.

Moreover, the approach used to prove this theorem also implies an analogous lower bound on non-
adaptive uniformity testing in the conditional model, answering a conjecture of Chakraborty et
al. [CFGM13]:

Theorem 1.3 (Non-Adaptive Uniformity Testing). Any non-adaptive algorithm which, given COND
access to an unknown distribution D on [n], distinguishes with probability at least 2/3 between
(a) D = U and (b) dTV(D,U) ≥ 1

4 , must have query complexity Ω(logn).

We note that these results complement polylog(n)-query upper bounds, the former of which we
sketch in this paper, and the latter obtained by Chakraborty et al. [CFGM13]. This shows that
both of these problems have query complexity logΘ(1) n in the non-adaptive case.

Finally, we conclude with an upper bound for adaptive support size estimation. Specifically, we
provide a Õ(log logn)-query algorithm for support size estimation. This shows that the question
becomes double exponentially easier when conditional samples are allowed.

Theorem 1.4 (Adaptive Support Size Estimation). Let τ > 0 be any constant. There exists
an adaptive algorithm which, given COND access to an unknown distribution D on [n] which has
minimum non-zero probability τ/n and accuracy parameter ε makes Õ

(
(log logn)/ε3) queries to

the oracle and outputs a value ω̃ such that the following holds. With probability at least 2/3,
ω̃ ∈ [1

1+ε · ω, (1 + ε) · ω], where ω = |supp(D)|.

1.2.1 Relation to the Ron-Tsur model

Recent work of Ron and Tsur [RT14] studies a model which is slightly stronger than ours. In their
setting, the algorithm still performs queries consisting of a subset of the domain. However, the
algorithm is also given the promise that the distribution is uniform on a subset of the domain, and
whenever a query set contains 0 probability mass the oracle explicitly indicates this is the case.
Their paper provides a number of results for support size estimation in this model.

We point out two connections between our work and theirs. First, our Ω(logn) lower bound
for non-adaptive support size estimation (Theorem 1.2) leads to the same lower bound for the
problem in the model of Ron and Tsur. Although lower bounds in the conditional sampling setting
do not apply directly to theirs, we note that our construction and analysis still carry over. This
provides a nearly tight answer to this question, which was left unanswered in their paper. Also,

4

our Õ(log logn)-query algorithm for adaptive support size estimation (Theorem 1.4) can be seen
as generalizing their result to the weaker conditional sampling model (most significantly, when we
are not given the promise that the distribution be uniform).

1.3 Techniques and proof ideas

We now provide an overview of the techniques and arguments used to prove our results.

Lower bound on adaptive equivalence testing. In order to prove our main ω(1) lower bound
on the query complexity of testing equivalence in the conditional sampling model, we have to deal
with one main conceptual issue: adaptivity. While the standard sampling model does not, by
definition, allow any choice on what the next query to the oracle should be, this is no longer the
case for COND algorithms. Quantifying the power that this grants an algorithm makes things
much more difficult. To handle this point, we follow the approach of Chakraborty et al. [CFGM13]
and focus on a restricted class of algorithms they introduce, called “core adaptive testers” (see
Section 2.2 for a formal definition). They show that this class of testers is equivalent to general
algorithms for the purpose of testing a broad class of properties, namely those which are invariant
to any permutation of the domain. Using this characterization, it remains for us to show that none
of these structurally much simpler core testers can distinguish whether they are given conditional
access to (a) a pair of random identical distributions (D1, D1), or (b) two distributions (D1, D2)
drawn according to a similar process, which are far apart.

At a high level, our lower bound works by designing instances where the property can be tested
if and only if the support size is known to the algorithm. Our construction randomizes the support
size by embedding the instance into a polynomially larger domain. Since the algorithm is only
allowed a small number of queries, Yao’s Principle allows us to argue that, with high probability,
a deterministic algorithm is unable to “guess” the support size. This separates queries into several
cases. First, in a sense we make precise, it is somehow “predictable” whether or not a query will
return an element we have previously observed. If we do, it is similarly predictable which element
the query will return. On the other hand, if we observe a fresh element, the query set is either “too
small” or “too large.” In the former case, the query will entirely miss the support, and the sampling
process is identical for both types of instance. In the latter case, the query will hit a large portion
of the support, and the amount of information gleamed from a single sample is minimal.

At a lower level, this process itself is reminiscent of the lower bound construction of Canonne,
Ron, and Servedio [CRS15] on testing identity (with a PAIRCOND oracle), with one pivotal twist.
As in their work, both D1 and D2 are uniform within each of ω(1) “buckets” whose size grows
exponentially and are grouped into “bucket-pairs.” Then, D2 is obtained from D1 by internally
redistributing the probability mass of each pair of buckets, so that the total mass of each pair is
preserved but each particular bucket has mass going up or down by a constant factor (see Section 3.1
for details of the construction). However, we now add a final step, where in both D1 and D2 the
resulting distribution’s support is scaled by a random factor, effectively reducing it to a (randomly)
negligible fraction of the domain. Intuitively, this last modification has the role of “blinding” the
testing algorithm: we argue that unless its queries are on sets whose size somehow match (in a
sense formalized in Section 3.2) this random size of the support, the sequences of samples it will
obtain under D1 and D2 are almost identically distributed. The above discussion crucially hides
many significant aspects and technical difficulties which we address in Section 3. Moreover, we
observe that the lower bound we obtain seems to be optimal with regard to our proofs techniques

5

(specifically, to the decision tree approach), and not an artifact of our lower bound instances.
Namely, there appear to be conceptual barriers to strengthening our result, which would require
new ideas.

Lower bound on non-adaptive support size estimation. Turning to the (non-adaptive)
lower bound of Theorem 1.2, we define two families of distributions D1 and D2, where an instance
is either a draw (D1, D2) from D1 × D2, or simply (D1, D1). Any distribution in D2 has support
size γ times that of its corresponding distribution in D1. Yet, we argue that no non-adaptive
deterministic tester making too few queries can distinguish between these two cases, as the tuple of
samples it will obtain from D1 or (the corresponding) D2 is almost identically distributed (where
the randomness is over the choice of the instance itself). To show this last point, we analyze
separately the case of “small” queries (conditioning on sets which turn out to be much smaller than
the actual support size, and thus with high probability will not even intersect it) and the “big”
ones (where the query set A is so big in front of the support size S that a uniform sample from
A ∩ S is essentially indistinguishable from a uniform sample from A). We conclude the proof by
invoking Yao’s Principle, carrying the lower bound back to the setting of non-adaptive randomized
testers.

Interestingly, this argument essentially gives us Theorem 1.3 “for free:” indeed, the big-query-
set case above is handled by proving that the distribution of samples returned on those queries is
indistinguishable, both for D1 and D2, from samples obtained from the actual uniform distribu-
tion. Considering again the small-query-set case separately, this allows us to argue that a random
distribution from (say) D1 is indistinguishable from uniform.

Upper bound on support size estimation. Our algorithm for estimating the support size
to a constant factor (Theorem 1.4) is simple in spirit, and follows a guess-and-check strategy. In
more detail, it first obtains a “reference point” outside the support, to check whether subsequent
samples it may consider belong to the support. Then, it attempts to find a rough upper bound on
the size of the support, of the form 22j (so that only log logn many options have to be considered);
by using its reference point to check if a uniform random subset of this size contains, as it should,
at least one point from the support. Once such an upper bound has been obtained using this
double-exponential strategy, a refined bound is then obtained via a binary search on the new range
of values for the exponent, {2j−1, . . . , 2j}. Not surprisingly, our algorithm draws on similar ideas
as in [RT14, Sto85], with some additional machinery to supplement the differences in the models.
Interestingly, as a side-effect, this upper bound shows our analysis of Theorem 1.1 to be tight up to
a quadratic dependence. Indeed, the lower bound construction we consider (see Section 3.1) can be
easily “defeated” if an estimate of the support size is known, and therefore cannot yield better than
a Ω(log logn) lower bound. Similarly, this also shows that the adaptive lower bound for support
size estimation of Chakraborty et al. [CFGM13] is also tight up to a quadratic dependence.

Organization. The rest of the paper describes details and proofs of the results mentioned in the
above discussion. In Section 2, we introduce the necessary definitions and some of the tools we shall
use. Section 3 covers our main result on adaptive equivalence testing, Theorem 1.1. In Section 4 we
prove our lower bounds for support size estimation and uniformity testing, and Section 5 details our
upper bounds for support size estimation. The reader may independently read the corresponding
sections at their discretion.

6

2 Preliminaries

2.1 Notation and sampling models

All throughout this paper, we denote by [n] the set {1, . . . , n}, and by log the logarithm in base 2.
A probability distribution over a (countable) domain [n] is a non-negative function D : [n]→ [0, 1]
such that

∑
x∈[n]D(x) = 1. We denote by U(S) the uniform distribution on a set S. Given a

distribution D over [n] and a set S ⊆ [n], we write D(S) for the total probability mass
∑
x∈S D(x)

assigned to S by D. Finally, for S ⊆ [n] such that D(S) > 0, we denote by DS the conditional
distribution of D restricted to S, that is DS(x) = D(x)

D(S) for x ∈ S and DS(x) = 0 otherwise.

As is usual in distribution testing, in this work the distance between two distributions D1, D2
on [n] will be the total variation distance:

dTV(D1, D2) def= 1
2‖D1 −D2‖1 = 1

2
∑
x∈[n]
|D1(i)−D2(i)| = max

S⊆[n]
(D1(S)−D2(S)) (1)

which takes value in [0, 1].

In this work, we focus on the setting of conditional access to the distribution, as introduced and
studied in [CFGM13, CRS15]. We reproduce below the corresponding definition of a conditional
oracle, henceforth referred to as COND:

Definition 2.1 (Conditional access model). Fix a distribution D over [n]. A COND oracle for D,
denoted CONDD, is defined as follows: the oracle takes as input a query set S ⊆ [n], chosen by the
algorithm, that has D(S) > 0. The oracle returns an element i ∈ S, where the probability that
element i is returned is DS(i) = D(i)/D(S), independently of all previous calls to the oracle.

Note that as described above the behavior of CONDD(S) is undefined if D(S) = 0, i.e., the set
S has zero probability under D. Various definitional choices could be made to deal with this. These
choice do not do not make significant difference in most situations, as most (adaptive) algorithms
can always include in their next queries a sample previously obtained; while our lower bounds can
be thought of as putting exponentially small probability mass of elements outside the support. For
this reason, and for convenience, we shall hereafter assume, following Chakraborty et al., that the
oracle returns in this case a sample uniformly distributed in S.

Finally, recall that a property P of distributions over [n] is a set consisting of all distributions
that have the property. The distance from D to a property P, denoted dTV(D,P), is then de-
fined as infD′∈P dTV(D,P). We use the standard definition of testing algorithms for properties of
distributions over [n], tailored for the setting of conditional access to an unknown distribution:

Definition 2.2 (Property tester). Let P be a property of distributions over [n]. A t-query COND
testing algorithm for P is a randomized algorithm T which takes as input n, ε ∈ (0, 1], as well as
access to CONDD. After making at most t(ε, n) calls to the oracle, T either outputs ACCEPT or
REJECT, such that the following holds:
• if D ∈ P, T outputs ACCEPT with probability at least 2/3;

2Recall that a non-adaptive tester is an algorithm whose queries do not depend on the answers obtained from
previous ones, but only on its internal randomness. Equivalently, it is a tester that can commit “upfront” to all the
queries it will make to the oracle.

7

• if dTV(D,P) ≥ ε, T outputs REJECT with probability at least 2/3.

We observe that the above definitions can be straightforwardly extended to the more general
setting of pairs of distributions, where given independent access to two oracles CONDD1 , CONDD2

the goal is to test whether (D1, D2) satisfies a property (now a set of pairs of distributions). This
will be the case in Section 3, where we will consider equivalence testing, that is the property
Peq ={ (D1, D2) : D1 = D2 }.

2.2 Adaptive Core Testers

In order to deal with adaptivity in our lower bounds, we will use ideas introduced by Chakraborty
et al. [CFGM13]. These ideas, for the case of label-invariant properties3 allow one to narrow down
the range of possible testers and focus on a restricted class of such algorithms called adaptive core
testers. These core testers do not have access to the full information of the samples they draw,
but instead only get to see the relations (inclusions, equalities) between the queries they make and
the samples they get. Yet, Chakraborty et al. [CFGM13] show that any tester for a label-invariant
property can be converted into a core tester with same query complexity; thus, it is enough to
prove lower bounds against this – seemingly – weaker class of algorithms.

We here rephrase the definitions of a core tester and the view they have of the interaction with
the oracle (the configuration of the samples), tailored to our setting.

Definition 2.3 (Atoms and partitions). Given a family A = (A1, . . . , At) ⊆ [n]t, the atoms gener-
ated by A are the (at most) 2t distinct sets of the form

⋂t
r=1Cr, where Cr ∈ {Ar, [n] \ Ar}. The

family of all such atoms, denoted At(A), is the partition generated by A.

This definition essentially captures “all sets (besides the Ai’s) about which something can
be learnt from querying the oracle on the sets of A.” Now, given such a sequence of queries
A = (A1, . . . , At) and pairs of samples s = ((s(1)

1 , s
(2)
1), . . . , (s(1)

t , s
(2)
t)) ∈ A2

1 × · · · × A2
t , we

would like to summarize “all the label-invariant information available to an algorithm that obtains
((s(1)

1 , s
(2)
1), . . . , (s(1)

t , s
(2)
t)) upon querying A1, . . . , At for D1 and D2.” This calls for the following

definition:

Definition 2.4 (t-configuration). Given A = (A1, . . . , At) and s = ((s(1)
j , s

(2)
j))1≤j≤t as above, the

t-configuration of s consists of the 6t2 bits indicating, for all 1 ≤ i, j ≤ t, whether
• s(k)

i = s
(`)
j , for k, ` ∈ {1, 2}; and (relations between samples)

• s(k)
i ∈ Aj , for k ∈ {1, 2}. (relations between samples and query sets)

In other terms, it summarizes which is the unique atom Si ∈ At(A) that contains s(k)
i , and what

collisions between samples have been observed.

As aforementioned, the key idea is to argue that, without loss of generality, one can restrict
one’s attention to algorithms that only have access to t-configurations, and generate their queries
in a specific (albeit adaptive) fashion:

3Recall that a property is label-invariant (or symmetric) if it is closed under relabeling of the elements of the
support. More precisely, a property of distributions (resp. pairs of distributions) P is label-invariant if for any
distribution D ∈ P (resp. (D1, D2) ∈ P) and permutation σ of [n], one has D ◦ σ ∈ P (resp. (D1 ◦ σ,D2 ◦ σ) ∈ P).

8

Definition 2.5 (Core adaptive tester). A core adaptive distribution tester for pairs of distributions
is an algorithm T that acts as follows.
• In the i-th phase, based only on its own internal randomness and the configuration of the

previous queries A1, . . . , Ai−1 and samples obtained (s(1)
1 , s

(2)
1), . . . , (s(1)

i−1, s
(2)
i−1) – whose labels

it does not actually know, T provides:

– a number kAi for each A ∈ At(A1, . . . , Ai−1), between 0 and
∣∣∣A \ {s(1)

j , s
(2)
j }1≤j≤i−1

∣∣∣ (“how
many fresh, not-already-seen elements of each particular atom A should be included in
the next query”)

– sets K(1)
i ,K

(2)
i ⊆ {1, . . . , i − 1} (“which of the samples s(k)

1 , . . . , s(k)i−1 (whose label is
unknown to the tester, but referred to by the index of the query it got them) will be
included in the next query”).

• based on these specifications, the next query Ai is drawn (but not revealed to T) by
– drawing uniformly at random a set Λi in{

Λ ⊆ [n] \ {s(1)
j , s

(2)
j }1≤j≤i−1 : ∀A ∈ At(A1, . . . , Ai−1), |Λ ∩A| = kAi

}
.

That is, among all sets, containing only “fresh elements,” whose intersection with each
atom contains as many elements as T requires.

– adding the selected previous samples to this set:

Γi
def=
{
s

(1)
j : j ∈ K(1)

i

}
∪
{
s

(2)
j : j ∈ K(2)

i

}
;

Ai
def= Λi ∪ Γi .

This results in a set Ai, not fully known to T besides the samples it already got and decided
to query again; in which the labels of the fresh elements are unknown, but the proportions of
elements belonging to each atom are known.
• samples s(1)

i ∼ (D1)Ai and s
(2)
i ∼ (D2)Ai are drawn (but not disclosed to T). This defines

the i-configuration of A1, . . . , Ai and (s(1)
1 , s

(2)
1), . . . , (s(1)

i , s
(2)
i), which is revealed to T . Put

differently, the algorithm only learns (i) to which of the A`’s the new sample belongs, and (ii)
if it is one of the previous samples, in which stage(s) and for which of D1, D2 it has already
seen it.

After t = t(ε, n) such stages, T outputs either ACCEPT or REJECT, based only on the configuration
of A1, . . . , At and (s(1)

1 , s
(2)
1), . . . , (s(1)

t , s
(2)
t) (which is all the information it ever had access to).

Note that in particular, T does not know the labels of samples it got, nor the actual queries it
makes: it knows all about their sizes and sizes of their intersections, but not the actual “identity”
of the elements they contain.

2.3 On the use of Yao’s Principle in our lower bounds

We recall Yao’s Principle (e.g., see Chapter 2.2 of [MR95]), a technique which is ubiquitous in
the analysis of randomized algorithms. Consider a set S of instances of some problem: what this
principle states is that the worst-case expected cost of a randomized algorithm on instances in S

9

is lower-bounded by the expected cost of the best deterministic algorithm on an instance drawn
randomly from S.

As an example, we apply it in a standard way in Section 4: instead of considering a randomized
algorithm working on a fixed instance, we instead analyze a deterministic algorithm working on
a random instance. (We note that, importantly, the randomness in the samples returned by the
COND oracle is “external” to this argument, and these samples behave identically in an application
of Yao’s Principle.)

On the other hand, our application in Section 3 is slightly different, due to our use of adaptive
core testers. Once again, we focus on deterministic algorithms working on random instances, and
the randomness in the samples is external and therefore unaffected by Yao’s Principle. However, we
stress that the randomness in the choice of the set Λi is also external to the argument, and therefore
unaffected – similar to the randomness in the samples, the algorithm has no control here. Another
way of thinking about this randomness is via another step in the distribution over instances: after
an instance (which is a pair of distributions) is randomly chosen, we permute the labels on the
elements of the distribution’s domain uniformly at random. We note that since the property in
question is label-invariant, this does not affect its value. We can then use the model as stated in
Section 2.2 for ease of analysis, observing that this can be considered an application of the principle
of deferred decisions (as in Chapter 3.5 of [MR95]).

3 A Lower Bound for Equivalence Testing
We prove our main lower bound on the sample complexity of testing equivalence between unknown
distributions. We construct two priors Y and N over pairs of distributions (D1, D2) over [n]. Y is a
distribution over pairs of distributions of the form (D,D), namely the case when the distributions
are identical. Similarly, N is a distribution over (D1, D2) with dTV(D1, D2) ≥ 1

4 . We then show
that no algorithm T making O

(√
log logn

)
queries to CONDD1 ,CONDD2 can distinguish between

a draw from Y and N with constant probability (over the choice of (D1, D2), the randomness in
the samples it obtains, and its internal randomness).

We describe the construction of Y and N in Section 3.1, and provide a detailed analysis in Sec-
tion 3.2.

3.1 Construction

We now summarize how a pair of distribution is constructed under Y and N . (Each specific step
will be described in more detail in the subsequent paragraphs.)

1. Effective Support
(a) Pick kb from the set {0, 1, . . . , 1

2 logn} at random.

(b) Let b = 2kb and m def= b · n1/4.
2. Buckets

(a) ρ and r are chosen with
∑2r
i=1 ρ

i = n1/4.
(b) Divide {1, . . . ,m} into intervals B1, . . . , B2r with |Bi| = b · ρi.

3. Distributions
(a) Assign probability mass 1

2r uniformly over Bi to generate distribution D1.

10

(b) (i) Let π1, . . . , πr be independent 0/1 with Pr(πi = 0) = 1
2 .

(ii) If πi = 0, assign probability mass 1
4r and 3

4r over B2i−1 and B2i respectively, else 3
4r

and 1
4r respectively. This generates a distribution D2.

4. Support relabeling
(a) Pick a permutation σ ∈ Sn of the total support n.
(b) Relabel the symbols of D1 and D2 according to σ.

5. Output: Generate (D1, D1) for Y, and (D1, D2) otherwise.

B1B2B3 B4 (. . .)

Dj(i)

im n

Figure 1: A no-instance (D1, D2) (before permutation).

We now describe the various steps of the construction in greater detail.

Effective support. Both D1 and D2, albeit distributions on [n], will have (common) sparse
support. The support size is taken to be m def= b · n1/4. Note that, from the above definition,
m is chosen uniformly at random from products of n1/4 with powers of 2, resulting in values in
[n1/4, n3/4].

In this step b will act as a random scaling factor. The objective of this random scaling is to
induce uncertainty in the algorithm’s knowledge of the true support size of the distributions, and
to prevent it from leveraging this information to test equivalence. In fact one can verify that the
class of distributions induced for a single value of b, namely all distributions have the same value
of m, then one can distinguish the Y and N cases with only O(1) conditional queries.

Buckets. Our construction is inspired by the lower bound of Canonne, Ron, and Servedio [CRS15,
Theorem 8] for the more restrictive PAIRCOND access model. We partition the support in 2r
consecutive intervals (henceforth referred to as buckets) B1, . . . , B2r, where the size of the i-th

11

bucket is bρi. We note that r and ρ will be chosen such that
∑2r
i=1 bρ

i = bn1/4, i.e., the buckets fill
the effective support.

Distributions. We output a pair of distributions (D1, D2). Each distribution that we construct
is uniform within any particular bucket Bi. In particular, the first distribution assigns the same
mass 1

2r to each bucket. Therefore, points within Bi have the same probability mass 1
(2rbρi) . For

the Y case, the second distribution is identical to the first. For the N case, we pair buckets in r
consecutive bucket-pairs Π1, . . . ,Πr, with Πi = B2i−1 ∪ B2i. For the second distribution D2, we
consider the same buckets as D1, but repartition the mass 1/r within each Πi. More precisely, in
each pair, one of the buckets gets now total probability mass 1

4r while the other gets 3
4r (so that the

probability of every point is either decreased by a factor 1
2 or increased by 3

2). The choice of which
goes up and which goes down is done uniformly and independently at random for each bucket-pair
determined by the random choices of πi’s.

Random relabeling. The final step of the construction randomly relabels the symbols, namely
is a random injective map from [m] to [n]. This is done to ensure that no information about the
individual symbol labels can be used by the algorithm for testing. For example, without this the
algorithm can consider a few symbols from the first bucket and distinguish the Y and N cases. As
mentioned in Section 2.3, for ease of analysis, the randomness in the choice of the permutation is,
in some sense, deferred to the randomness in the choice of Λi during the algorithm’s execution.

Summary. A no-instance (D1, D2) is thus defined by the following parameters: the support size
m, the vector (π1, . . . , πm) ∈ {0, 1}r (which only impacts D2), and the final permutation σ of the
domain. A yes-instance (D1, D1) follows an identical process, however, π has no influence on the
final outcome. See Figure 1 for an illustration of such a (D1, D2) when σ is the identity permutation
and thus the distribution is supported over the first m natural numbers.

Values for ρ and r. By setting r = logn
8 log ρ +O(1), we have as desired

∑2r
i=1|Bi| = m and there is a

factor (1+o(1))n1/4 between the height of the first bucket B1 and the one of the last, B2r. It remains
to choose the parameter ρ itself; we shall take it to be 2

√
logn, resulting in r = 1

8
√

logn+O(1). (Note
that for the sake of the exposition, we ignore technical details such as the rounding of parameters,
e.g. bucket sizes; these can be easily taken care of at the price of cumbersome case analyses, and
do not bring much to the argument.)

3.2 Analysis

We now prove our main lower bound, by analyzing the behavior of core adaptive testers (as per
Definition 2.5) on the families Y and N from the previous section. In Section 3.2.1, we argue that,
with high probability, the sizes of the queries performed by the algorithm satisfy some specific
properties. Conditioned upon this event, in Section 3.2.2, we show that the algorithm will get
similar information from each query, whether it is running on a yes-instance or a no-instance.

Before moving to the heart of the argument, we state the following fact, straightforward from
the construction of our no-instances:

Fact 3.1. For any (D1, D2) drawn from N , one has dTV(D1, D2) = 1/4.

12

Moreover, as allowing more queries can only increase the probability of success, we hereafter focus
on a core adaptive tester that performs exactly q = 1

10
√

log logn (adaptive) queries; and will show
that it can only distinguish between yes- and no-instances with probability o(1).

3.2.1 Banning “bad queries”

As mentioned in Section 3.1, the draw of a yes- or no-instance involves a random scaling of the size
of the support of the distributions, meant to “blind” the testing algorithm. Recall that a testing
algorithm is specified by a decision tree, which at step i, specifies how many unseen elements from
each atom to include in the query ({kAi }) and which previously seen elements to include in the
query (sets K(1)

i ,K
(2)
i , as defined in Section 2.2), where the algorithm’s choice depends on the

observed configuration at that time. Note that, using Yao’s Principle (as discussed in Section 2.3),
these choices are deterministic for a given configuration – in particular, we can think of all {kAi }
and K(1)

i ,K
(2)
i in the decision tree as being fixed. In this section, we show that all kAi values satisfy

with high probability some particular conditions with respect to the choice of distribution, where
the randomness is over the choice of the support size.

First, we recall an observation from [CFGM13], though we modify it slightly to apply to con-
figurations on pairs of distributions and we apply a slightly tighter analysis. This essentially limits
the number of states an algorithm could be in by a function of how many queries it makes.

Proposition 3.2. The number of nodes in a decision tree corresponding to a q-sample algorithm
is at most 26q2+1.

Proof. As mentioned in Definition 2.4, an i-configuration can be described using 6i2 bits, resulting
in at most 26i2 i-configurations. Since each i-configuration leads us to some node on the i-th level
of the decision tree, the total number of nodes can be upper bounded by summing over the number
of i-configurations for i ranging from 0 to q, giving us the desired bound.

For the sake of the argument, we will introduce a few notions applying to the sizes of query sets:
namely, the notions of a number being small, large, or stable, and of a vector being incomparable.
Roughly speaking, a number is small if a uniformly random set of this size does not, in expectation,
hit the largest bucket B2r. On the other hand, it is large if we expect such a set to intersect
many bucket-pairs (i.e., a significant fraction of the support). The definition of stable numbers is
slightly more quantitative: a number β is stable if a random set of size β, for each bucket Bi, either
completely misses Bi or intersects it in a number of points very close to the expected number (in
this case, we say the set concentrates over Bi). Finally, a vector of values (βj) is incomparable if
the union of random sets S1, . . . , Sm of sizes β1, . . . , βm contains (with high probability) an amount
of mass D

(⋃
j Sj

)
which is either much smaller or much larger than the probability D(s) of any

single element s.
We formalize these concepts in the definitions below. To motivate them, it will be useful to bear in
mind that, from the construction described in Section 3.1, the expected intersection of a uniform
random set of size β with a bucket Bi is of size βbρi/n; while the expected probability mass from
Bi it contains (under either D1 or D2) is β/(2rn).

Definition 3.3. Let q be an integer, and let ϕ = Θ(q5/2). A number β is said to be small if
β < n

bρ2r ; it is large (with relation to some integer q) if β ≥ n
bρ2r−2ϕ .

13

Note that the latter condition equivalently means that, in expectation, a set of large size will
intersect at least ϕ+ 1 bucket-pairs (as it hits an expected 2ϕ+ 1 buckets, since β|B2r−2ϕ| /n ≥ 1).
From the above definitions we get that, with high probability, a random set of any fixed size will
in expectation either hit many or no buckets:

Proposition 3.4. A number is either small or large with probability 1−O
(
ϕ log ρ
logn

)
.

Proof. A number β is neither large nor small if ρ2ϕn
βρ2r ≤ b ≤ n

βρ2r . The ratio of the endpoints of
the interval is ρ2ϕ. Since b = 2kb , this implies that at most log ρ2ϕ = 2ϕ log ρ values of kb could
result in a fixed number falling in this range. As there are Θ(logn) values for kb, the proposition
follows.

The next definition characterizes the sizes of query sets for which the expected intersection with
any bucket is either close to 0 (less than 1/α, for some threshold α), or very big (more than α). (It
will be helpful to keep in mind that we will eventually use this definition with α = poly(q).)

Definition 3.5. A number β is said to be α-stable (for α ≥ 1) if, for each j ∈ [2r], β /∈
[

n
αbρj

, αn
bρj

]
.

A vector of numbers is said to be α-stable if all numbers it contains are α-stable.

Proposition 3.6. A number is α-stable with probability 1−O
(
r logα
logn

)
.

Proof. Fix some j ∈ [2r]. A number β does not satisfy the definition of α-stability for this j if
n

αβρj
≤ b ≤ nα

βρj
. Since b = 2kb , this implies that at most log 2α values of kb could result in a fixed

number falling in this range. Noting that there are Θ(logn) values for kb and taking a union bound
over all 2r values for j, the proposition follows.

The following definition characterizes the sizes of query sets which have a probability mass far
from the probability mass of any individual element. (For the sake of building intuition, the reader
may replace ν in the following by the parameter b of the distribution.)

Definition 3.7. A vector of numbers (β1, . . . , β`) is said to be (α, τ)-incomparable with respect to
ν (for τ ≥ 1) if the two following conditions hold.
• (β1, . . . , β`) is α-stable.
• Let ∆j be the minimum ∆ ∈ {0, . . . , 2r} such that βjνρ

2r−∆

n ≤ 1
α , or 2r if no such ∆ exists.

For all i ∈ [2r], 1
2rn

∑`
j=1 βj∆j 6∈

[
1

τ2rνρi ,
τ

2rνρi
]
.

Recall from the definition of α-stability of a number that a random set of this size either has
essentially no intersection with a bucket or “concentrates over it” (i.e., with high probability, the
probability mass contained in the intersection with this bucket is very close to the expected value).
The above definition roughly captures the following. For any j, ∆j is the number of buckets that
will concentrate over a random set of size βj . The last condition asks that the total probability mass
from D1 (or D2) enclosed in the union of m random sets of size β1, . . . , β` be a multiplicative factor
of τ from the individual probability weight 1

2rbρi of a single element from any of the 2r buckets.

Proposition 3.8. Given that a vector of numbers of length ` is α-stable, it is (α, q2)-incomparable
with respect to b with probability at least 1−O

(
r log q
logn

)
.

14

Proof. Fix any vector (β1, . . . , β`). By the definition above, for each value b such that (β1, . . . , β`)
is α-stable, we have

βj ·
αρ2r

n
≤ ρ∆j

b
< βj ·

αρ2r+1

n
, j ∈ [`]

or, equivalently,

log αβj
n

log ρ + 2r + log b
log ρ ≤ ∆j <

log αβj
n

log ρ + 2r + log b
log ρ + 1, j ∈ [`].

Writing λj
def= log

αβj
n

log ρ + 2r for j ∈ [`], we obtain that

∑̀
j=1

βj∆jb = b
∑̀
j=1

βj(λj +O(1)) + b log b
log ρ

∑̀
j=1

βj .

• If it is the case that log ρ ·
∑`
j=1 βj(λj + O(1)) � log b ·

∑`
j=1 βj . Then, for any fixed i ∈

[2r], to meet the second item of the definition of incomparability we need
∑`
j=1 βj∆jb /∈

[n/(200qρi), 200qn/ρi]. This is essentially, with the assumption above, requiring that

b log b /∈
[

n log ρ
2q2ρi

∑`
j=1 βj

,
2q2n log ρ
ρi
∑`
j=1 βj

]
.

Recalling that b log b = kb2kb , this means that O(log q/ log log q) values of kb are to be ruled
out. (Observe that this is the number of possible “bad values” for b without the condition
from the case distinction above; since we add an extra constraint on b, there are at most this
many values to avoid.)
• Conversely, if log ρ ·

∑`
j=1 βj(λj +O(1))� log b ·

∑`
j=1 βj the requirement becomes

b /∈
[

n log ρ
2q2ρi

∑`
j=1 βj(λj +O(1))

,
2q2n log ρ

ρi
∑`
j=1 βj(λj +O(1))

]
.

ruling out this time O(log q) values for kb.

• Finally, the two terms are comparable only if log b = Θ
(

log ρ·
∑`
j=1 βj(λj+O(1))·

(∑`
j=1 βj

)−1)
;

given that log b = kb, this rules out this time O(1) values for kb.
A union bound over the 2r possible values of i, and the fact that kb can take Θ(logn) values,
complete the proof.

We put these together to obtain the following lemma:

Lemma 3.9. With probability at least 1 − O
(

26q2+q(r logα+ϕ log ρ)+26q2 (r log q)
logn

)
, the following holds

for the decision tree corresponding to a q-query algorithm:
• the size of each atom is α-stable and either large or small;
• the size of each atom, after excluding elements we have previously observed,4 is α-stable and
either large or small;

4More precisely, we mean to say that for each i ≤ q, for every atom A defined by the partition of (A1, . . . , Ai),
the values kAi and |A \ {s(1)

1 , s
(2)
1 , . . . , s

(1)
i−1, s

(2)
i−1}| − k

A
i are α-stable and either large or small;

15

• for each i, the vector (kAi)A∈At(A1,...,Ai) is (α, q2)-incomparable (with respect to b).

Proof. From Proposition 3.2, there are at most 26q2+1 tree nodes, each of which contains one vector
(kAi)A, and at most 2q atom sizes. The first point follows from Propositions 3.4 and 3.6 and applying
the union bound over all 26q2+1 · 2 · 2q sizes, where we note the additional factor of 2 comes from
either including or excluding the old elements. The latter point follows from Proposition 3.8 and
applying the union bound over all 26q2+1 (kAi) vectors.

3.2.2 Key lemma: bounding the variation distance between decision trees

In this section, we prove a key lemma on the variation distance between the distribution on leaves
of any decision tree, when given access to either an instance from Y or N . This lemma will in
turn directly yield Theorem 1.1. Hereafter, we set the parameters α (the threshold for stability),
ϕ (the parameter for smallness and largeness) and γ (an accuracy parameter for how well things
concentrate over their expected value) as follows:5 α

def= q7, ϕ def= q5/2 and γ
def= 1/ϕ = q−5/2.

(Recall further that q = 1
10
√

log logn.)

Lemma 3.10. Conditioned on the events of Lemma 3.9, consider the distribution over leaves of
any decision tree corresponding to a q-query adaptive algorithm when the algorithm is given a yes-
instance, and when it is given a no-instance. These two distributions have total variation distance
o(1).

Proof. This proof is by induction. We will have three inductive hypotheses, E1(t),E2(t), and
E3(t). Assuming all three hold for all t < i, we prove E1(i). Additionally assuming E1(i), we
prove E2(i) and E3(i).

Roughly, the first inductive hypothesis states that the query sets behave similarly to as if we
had picked a random set of that size. It also implies that whether or not we get an element we
have seen before is “obvious” based on past observances and the size of the query we perform. The
second states that we never observe two distinct elements from the same bucket-pair. The third
states that the next sample is distributed similarly in either a yes-instance or a no-instance. Note
that this distribution includes both features which our algorithm can observe (i.e., the atom which
the sample belongs to and if it collides with a previously seen sample), as well as those which it
can not (i.e., which bucket-pair the observed sample belongs to). It is necessary to show the latter,
since the bucket-pair a sample belongs to may determine the outcome of future queries.

More precisely, the three inductive hypotheses are as follows:
• E1(i): In either a yes-instance or a no-instance, the following occurs: For an atom S in the

partition generated by A1, . . . , Ai, let S′ = S \ {s(1)
1 , s

(2)
1 , . . . , s

(1)
i−1, s

(2)
i−1}. For every such S′,

let `S′ be the largest index ` ∈ {0, . . . , 2r} such that |S
′|bρ`
n ≤ 1

α , or 0 if no such ` exists. We
claim that `S′ ∈ {0, . . . , 2r−ϕ−2}∪{2r}, and say S′ is small if `S′ = 2r and large otherwise.
Additionally:
– for j ≤ `S′ , |S′ ∩Bj | = 0;
– for j > `S

′ , |S′ ∩Bj | lies in [1− iγ, 1 + iγ] |S
′|bρj
n .

5This choice of parameters is not completely arbitrary: combined with the setting of q, r and ρ, they ensure a
total bound o(1) on variation distance and probability of “bad events” as well as a (relative) simplicity and symmetry
in the relevant quantities.

16

Furthermore, let p1 and p2 be the probability mass contained in Λi and Γi, respectively. Then
p1

p1+p2
≤ O

(
1
q2

)
or p2

p1+p2
≤ O

(
1
q2

)
(that is, either almost all the probability mass comes from

elements which we have not yet observed, or almost all of it comes from previously seen ones).
• E2(i): No two elements from the set {s(1)

1 , s
(2)
1 , . . . , s

(1)
i , s

(2)
i } belong to the same bucket-pair.

• E3(i): Let T yes
i be the random variable representing the atoms and bucket-pairs6 containing

(s(1)
i , s

(2)
i), as well as which of the previous samples they intersect with, when the i-th query is

performed on a yes-instance, and define T no
i similarly for no-instances. Then dTV

(
T yes
i , T no

i

)
≤

O
(

1
q2 + 1

ρ + γ + 1
ϕ

)
= o(1).

We will show that E1(i) holds with probability 1 − O
(
2i exp

(
−2γ2α

3

))
and E2(i) holds with

probability 1 − O(i/ϕ). Let T yes be the random variable representing the q-configuration and the
bucket-pairs containing each of the observed samples in a yes-instance, and define T no similarly for
a no-instance. We note that this random variable determines which leaf of the decision tree we
reach. By a union bound, coupling argument, and triangle inequality, the total variation distance
between T yes and T no will be O

(
2q exp

(
−2γ2α

3

)
+ q2

ϕ + 1
q + q

ρ + qγ + q
ϕ

)
= o(1) (from our choice

of α, γ, ϕ), giving the desired result.
We proceed with the inductive proofs of E1(i), E2(i), and E3(i), noting that the base cases

hold trivially for all three of these statements. Throughout this proof, recall that Λi is the set
of unseen support elements which we query, and Γi is the set of previously seen support elements
which we query.

Lemma 3.11. Assuming that E1(t),E2(t),E3(t) hold for all 1 ≤ t ≤ i− 1, then E1(i) holds with
probability at least 1−O

(
2i exp

(
−2γ2α

3

))
= 1− 2i−Ω(q2).

Proof. We start with the first part of the statement of E1(i), prior to “Furthermore”; and let S (and
the corresponding S′) be any atom as in E1(i). First, we note that `S′ ∈ {0, . . . , 2r−ϕ− 2}∪ {2r}
since we are conditioning on Lemma 3.9: |S′| is α-stable and either large or small, which enforces
this condition.
Next, suppose S′ is contained in some other atom T generated by A1, . . . , Ai−1, and let T ′ =
T \{s(1)

1 , s
(2)
1 , . . . , s

(1)
i−1, s

(2)
i−1}. Since |S′| ≤ |T ′|, this implies that `T ′ ≤ `S′ . We argue about |T ′∩Bj |

for three regimes of j:
• The first case is j ≤ `T

′ . By the inductive hypothesis, |T ′ ∩Bj | = 0, so |S′ ∩Bj | = 0 with
probability 1.
• The next case is `T ′ < j ≤ `S

′ . Recall from the definition of an core adaptive tester that S′
will be chosen uniformly at random from all subsets of T ′ of the appropriate size. By the
inductive hypothesis,

|T ′ ∩Bj |
|T ′|

∈ [1− (i− 1)γ, 1 + (i− 1)γ] bρ
j

n
,

and therefore

E
[∣∣S′ ∩Bj∣∣] ∈ [1− (i− 1)γ, 1 + (i− 1)γ] |S

′| bρj

n
, implying E

[∣∣S′ ∩Bj∣∣] ≤ 2
αρ`S

′−j
;

6If a sample s(k)
i does not belong to any bucket (if the corresponding i-th query did not intersect the support), it

is marked in T yes
i with a “dummy label” to indicate so.

17

where the inequality is by the definition of `S′ and using the fact that (i− 1)γ ≤ 1. Using a
Chernoff bound for negatively correlated random variables (as in e.g. [DR96]),

Pr
[∣∣S′ ∩Bj∣∣ ≥ 1

]
= Pr

[∣∣S′ ∩Bj∣∣ ≥ (1 + 1− µ
µ

)
µ

]
≤ exp

(
−(1− µ)2

3µ

)

≤ exp
(
− 1

12αρ
`S
′−j
)
,

where the second inequality holds because µ ≤ 2
αρ`S

′−j
and (1 − µ)2 ≥ 1

2 for n sufficiently
large.
• The final case is j > `S

′ . As in the previous one,

E
[∣∣S′ ∩Bj∣∣] ∈ [1− (i− 1)γ, 1 + (i− 1)γ] |S

′| bρj

n
, implying E

[∣∣S′ ∩Bj∣∣] ≥ αρj−`
S′−1

2 ;

where the inequality is by the definition of `S′ , α-stability, and using the fact that (i−1)γ ≤ 1
2 .

Using again a Chernoff bound for negatively correlated random variables,

Pr
[∣∣S′ ∩Bj∣∣− E

[∣∣S′ ∩Bj∣∣] ≥ γ|S′| bρj
n

]
≤ Pr

[∣∣S′ ∩Bj∣∣− E
[∣∣S′ ∩Bj∣∣] ≥ γ2E

[∣∣S′ ∩Bj∣∣]]
≤ 2 exp

(
−(2γ)2E[|S′ ∩Bj |]

3

)

≤ 2 exp
(
−2

3γ
2αρj−`

S′−1
)

where the first inequality comes from 2(1 − (i − 1)γ) ≥ 1, the second one is the Chernoff

bound, and the third derives from E[|S′ ∩Bj |] ≥ αρj−`
S′−1

2 .
Combining these, the probability that S′ does not satisfy the required conditions is at most

∑
j≤`T ′

0 +
∑

`T ′<j≤`S′
exp

(
− 1

12αρ
`S
′−j
)

+
∑
j>`S′

2 exp
(
−2

3γ
2αρj−`

S′−1
)
.

This probability is maximized when `S′ = `T
′ = 0, in which case it is

2r∑
j=1

2 exp
(
−2

3γ
2αρj−1

)
≤
∞∑
j=1

2 exp
(
−2

3γ
2αρj−1

)
≤ 3 exp

(
−2

3γ
2α

)
.

Taking a union bound over at most 2i sets gives us the desired probability bound.

Finally, we prove the statement following “Furthermore”; this will follow from the definition of
incomparability.
• First, we focus on Γi. Suppose that Γi contains at least one element with positive probability

mass (if not, the statement trivially holds). Let p′2 be the probability mass of the heaviest

18

element in Γi. Since our inductive hypothesis implies that Γi has no elements in the same
bucket pair, the maximum possible value for p2 is

p2 ≤ p′2 + 3p′2
ρ

+ 3p′2
ρ3 + · · · ≤ p′2 + 3p′2

ρ

∞∑
k=0

1
ρ2k =

(
1 + 3

ρ

ρ2

ρ2 − 1

)
p′2

≤ (1 + o(1))p′2

Therefore, p2 ∈ [p′2, (1 + o(1))p′2]. Supposing this heaviest element belongs to bucket j, we
can say that p2 ∈ [1

2 , (1 + o(1))3
2] 1

2rbρj .
• Next, we focus on Λi. Consider some atom A, from which we selected kA elements which have
not been previously observed: call the set of these elements A′. In the first part of this proof,
we showed that for each bucket Bk, either |A′ ∩Bk| = 0 or |A′ ∩Bk| ∈ [1− iγ, 1 + iγ] |A

′|bρk
n .

In the latter case, noting that iγ ≤ 1
2 and that the probability of an individual element in Bk

is within [1, 3] 1
4rbρk , the probability mass contained by |A′∩Bk| belongs to [1, 9]|A

′|
8rn . Recalling

the definition of ∆A as stated in Definition 3.7, as shown earlier in this proof, this non-empty
intersection happens for exactly ∆A bins. Therefore, the total probability mass in Λi is in
the interval

[
1
4 ,

9
4

]
1

2rn
∑
A∈At(A1,...,Ai) k

A
i ∆A.

Recall that we are conditioning on Lemma 3.9 which states that the vector (kAi)A∈At(A1,...,Ai) is
(α, q2)-incomparable with respect to b. Applying this definition to the bounds just obtained on the
probability masses in Λi and Γi gives the desired result.

Lemma 3.12. Assuming that E1(t),E2(t),E3(t) hold for all 1 ≤ t ≤ i− 1 and additionally E1(i),
then E2(i) holds with probability at least 1−O

(
i
ϕ

)
.

Proof. We focus on s(1)
i . If s(1)

i ∈ Γi, the conclusion is trivial, so suppose s(1)
i ∈ Λi. From E1(i), no

small atom intersects any of the buckets, so condition that s(1)
i belongs to some large atom S. Since

we want s(1)
i to fall in a distinct bucket-pair from 2(i−1)+1 other samples, there are at most 2i−1

bucket-pairs which s(1)
i should not land in. Using E1(i), the maximum probability mass contained

in the intersection of these bucket-pairs and S is (1 + iγ)(2i − 1) |S|rn . Similarly, additionally using
the definition of a large atom, the minimum probability mass contained in S is (1− iγ)ϕ |S|rn . Taking
the ratio of these two terms gives an upper bound on the probability of breaking this invariant,
conditioned on landing in S, as O(i/ϕ), where we note that 1+iγ

1−iγ = O(1). Since the choice of large
atom was arbitrary, we can remove the conditioning. Taking the union bound for s(1)

i and s(2)
i gives

the result.

Lemma 3.13. Assuming that E1(t),E2(t),E3(t) hold for all 1 ≤ t ≤ i− 1 and additionally E1(i),
then E3(i) holds.

Proof. We focus on some fixed setting of the history of the interaction, i.e. the configuration and
the bucket-pairs the past elements belong to, and show that the results of the next query will
behave similarly, whether the instance is a yes-instance or a no-instance. We note that, since we
are assuming the inductive hypotheses hold, certain settings which violate these hypotheses are not
allowed. We also note that s(1)

i is distributed identically in both instances, so we focus on si
def= s

(2)
i

for the remainder of this proof.

19

First, we condition that, based on the setting of the past history, si will either come from Λi or Γi
– this event happening with probability 1−O

(
1/q2).

Proposition 3.14. In either a yes-instance or a no-instance, si will either come from Λi or Γi with
probability 1−O

(
1
q

)
, where the choice of which one is deterministic based on the fixed configuration

and choice for the bucket-pairs of previously seen elements.

Proof. This is simply a rephrasing of the portion of E1(i) following “Furthermore.”

By a coupling argument, after conditioning on this event, we must show that the total variation
distance in either case is at most O

(
1
ρ + γ + 1

ϕ

)
= O

(
1

q5/2

)
. We break this into two cases, the

first being when s comes from Γi. In this case, we incur a cost in total variation distance which is
O(1/ρ):

Proposition 3.15. In either a yes-instance or a no-instance, condition that si comes from Γi.
Then. one of the following holds:
• |Γi ∩ Bj | = 0 for all j ∈ [2r], in which case si is distributed uniformly at random from the
elements of Γi;
• or |Γi∩Bj | 6= 0 for some j ∈ [2r], in which case si will be equal to some s ∈ Γi with probability

1 − O
(

1
ρ

)
, where the choice of s is deterministic based on the fixed configuration and choice

for the bucket-pairs of previously seen elements.

Proof. The former case follows from the definition of the sampling model. For the latter case, let
p be the probability mass of the heaviest element in Γi. Since our inductive hypothesis implies
that Γi has no elements in the same bucket-pair, the maximum possible value for the rest of the
elements is

3p
ρ

+ 3p
ρ3 + 3p

ρ5 + · · · ≤ 3p
ρ

∞∑
k=0

1
ρ2k = 3p

ρ

ρ2

ρ2 − 1 = O

(
p

ρ

)
.

Since the ratio of this value and p is O
(

1
ρ

)
, with probability 1−O

(
1
ρ

)
the sample returned is the

heaviest element in Γi.

Finally, we examine the case when s comes from Λi:

Proposition 3.16. Condition that si comes from Λi. Then either:
• |Λi ∩Bj | = 0 for all j ∈ [2r], in which case dTV(T yes

i , T no
i) = 0;

• or |Λi ∩Bj | 6= 0 for some j ∈ [2r], in which case dTV(T yes
i , T no

i) ≤ O
(
γ + 1

ϕ

)
= O

(
1

q5/2

)
Proof. The former case follows from the definition of the sampling model – since Λi does not
intersect any of the buckets, the sample will be labeled as such. Furthermore, the sample returned
will be drawn uniformly at random from Λi, and the probability of each atom will be proportional
to the cardinality of its intersection with Λi, in both the yes- and the no-instances.

We next turn to the latter case. Let X be the event that, if the intersection of Λi and some atom
A has a non-empty intersection with an odd number of buckets, then si does not come from the
unpaired bucket. Note that E1(i) and the definition of a large atom imply that an unpaired bucket
can only occur if the atom intersects at least ϕ bucket-pairs: conditioned on the sample coming

20

from a particular atom, the probability that it comes from the unpaired bucket is O(1/ϕ). Since
the choice of A was arbitrary, we may remove the conditioning, and note that Pr(X) = 1−O(1/ϕ).

Since

dTV(T yes
i , T no

i) ≤ dTV(T yes
i , T no

i | X) Pr(X) + dTV(T yes
i , T no

i | X̄) Pr(X̄)
≤ dTV(T yes

i , T no
i | X) +O(1/ϕ),

it remains to show that dTV(T yes
i , T no

i | X) ≤ O(γ).

First, we focus on the distribution over atoms, conditioned on X . Let NA be the number of
bucket-pairs with which A intersects both buckets, i.e., conditioned on X , the sample could come
from 2NA buckets, and letN def=

∑
A∈At(A1,...,Ai)N

A. By E1(i), the maximum amount of probability
mass that can be assigned to atom A is (1+γ)|S|NA/rn

(1−γ)|S|N/rn , and the minimum is (1−γ)|S|NA/rn
(1+γ)|S|N/rn , so the

total variation distance in the distribution incurred by this atom is at most O
(
γNA/N

)
. Summing

over all atoms, we get the desired O(γ).

Finally, we bound the distance on the distribution over bucket-pairs, again conditioned on X .
By E1(i) only large atoms will contain non-zero probability mass, so condition on the sample
coming from some large atom A. Let NA be the number of bucket-pairs with which A intersects
both buckets, i.e., conditioned on X , the sample could come from 2NA buckets. Using E1(i),
the maximum amount of probability mass that can be assigned to any intersecting bucket-pair
is (1+γ) |A|

rn

(1−γ) |A|
rn
NA

, and the minimum is (1−γ) |A|
rn

(1+γ) |A|
rn
NA

, so the total variation distance in the distribution

incurred by this bucket-pair is at most O
(
γ 1
NA

)
. Summing this difference over all NA bucket-pairs,

we get 2γ
1−γ2 = O(γ). Since the choice of large atom A was arbitrary, we can remove the conditioning

on the choice of atom. The statement follows by applying the union bound on the distribution over
bucket-pairs and the distribution over atoms.

We note that in both cases, the cost in total variation distance which is incurred isO
(

1
ρ + γ + 1

ϕ

)
,

which implies E3(i).

This concludes the proof of Lemma 3.10.

With this lemma in hand, the proof of the main theorem is straightforward:

Proof of Theorem 1.1. Conditioned on Lemma 3.9, Lemma 3.10 implies that the distribution over
the leaves in a yes-instance vs. a no-instance is o(1). Since an algorithm’s choice to accept or
reject depends deterministically on which leaf is reached, this bounds the difference between the
conditional probability of reaching a leaf which accepts. Since Lemma 3.9 occurs with probability
1− o(1), the difference between the unconditional probabilities is also o(1).

4 Lower Bounds for Non-Adaptive Algorithms
In this section, we prove our lower bounds for non-adaptive support size estimation and uniformity
testing, rephrased here:

21

Theorem 1.2 (Non-Adaptive Support Size Estimation). Any non-adaptive algorithm which, given
COND access to an unknown distribution D on [n], estimates the size of its support up to a factor
γ must have query complexity Ω

(
logn
log γ

)
, for any γ ≥

√
2.

Theorem 1.3 (Non-Adaptive Uniformity Testing). Any non-adaptive algorithm which, given COND
access to an unknown distribution D on [n], distinguishes with probability at least 2/3 between
(a) D = U and (b) dTV(D,U) ≥ 1

4 , must have query complexity Ω(logn).

These two theorems follow from the same argument, which we outline below before turning to the
proof itself.

Structure of the proof. By Yao’s Principle, we consider deterministic tests and study their
performance over random distributions, chosen to be uniform over a random subset of carefully
picked size. The proof of Theorem 1.2 then proceeds in 3 steps: in Lemma 4.2, we first argue
that all queries made by the deterministic tester will (with high probability over the choice of the
support size s) behave very “nicely” with regard to s, i.e. not be concentrated around it. Then, we
condition on this to bound the total variation distance between the sequence of samples obtained in
the two cases we “oppose,” a random distribution from a family D1 and the corresponding one from
a family D2. In Lemma 4.3 we show that the part of total variation distance due to samples from
the small queries is zero, except with probability o(1) over the choice of s. Similarly, Lemma 4.3
allows us to say (comparing both cases to a third “reference” case, a honest-to-goodness uniform
distribution over the whole domain, and applying a triangle inequality) that the remaining part of
the total variation distance due to samples from the big queries is zero as well, except again with
probability o(1). Combining these three lets us to conclude by properties of the total variation
distance, as (since the queries are non-adaptive) the distribution over the sequence of samples is
a product distribution. (Moreover, applying Lemma 4.3 as a stand-alone enables us, with little
additional work, to obtain Theorem 1.3, as our argument in particular implies distributions from
D1 are hard to distinguish from uniform.)

The families D1 and D2. Fix γ ≥
√

2 as in Theorem 1.2; writing β def= γ2, we define the set

S def=
{
βkn1/4 : 0 ≤ k ≤ logn

2 log β

}
= {n1/4, βn1/4, β2n1/4, . . . , , n3/4}

A no-instance (D1, D2) ∈ D1 ×D2 is then obtained by the following process:
• Draw s uniformly at random from S.
• Pick a uniformly random set S1 ⊆ [n] of size s, and set D1 to be uniform on S1.
• Pick a uniformly random set S2 ⊆ [n] of size βs, and set D2 to be uniform on S2.

(Similarly, a yes-instance is obtained by first drawing a no-instance (D1, D2), and discarding D2 to
keep only (D1, D1) ∈ D1 ×D1.)

We will argue that no algorithm can distinguish with high probability between the cases
(D1, D2) ∼ D1 × D2 and (D1, D2) ∼ D1 × D1, by showing that in both cases D1 and D2 gen-
erates transcripts indistinguishable from those the uniform distribution Un would yield. This will
imply Theorem 1.2, as any algorithm to estimate the support within a multiplicative γ would imply
a distinguisher between instances of the form (D1, D1) and (D1, D2) (indeed, the support sizes of

22

D1 and D2 differ by a factor β = γ2). (As for Theorem 1.3, observe that any distribution D1 ∈ D1
has constant distance from the uniform distribution on [n], so that a uniformity tester must be able
to tell D1 apart from Un.)

Small and big query sets. Let T be any deterministic non-adaptive algorithm making qT ≤
q = 1

100
logn
log β queries. Without loss of generality, we can assume T makes exactly q queries, and

denote them by A1, . . . , Aq ⊆ [n]. Moreover, we let ai = |Ai|, and (again without loss of generality)
write a1 ≥ · · · ≥ aq.

As a preliminary observation, note that for any A ⊂ [n] and 0 ≤ s ≤ n we have

ES |S ∩A| =
|A| s
n

where the expectation is over a uniform choice of S among all
(n
s

)
subsets of size s. This observation

will lead us to divide the query sets Ai in two groups, depending on the expected size of their
intersection with the (random) support.

With this in mind, the following definition will be crucial to our proof. Intuitively, it captures
the distribution of sizes of intersection of various query sets with the randomly chosen set S.

Definition 4.1. Let s ≥ 1, and A = {α1, . . . , αq} be any set of q integers. For a real number t > 0,
define

Ct(s)
def=
∣∣∣∣{ i ∈ [q] : αis

n
∈
(
β−t, βt

) }∣∣∣∣
to be the number of t-hit points of A (for s).

The next result will be crucial to prove our lower bounds: it roughly states that if we consider the
set of ai’s and scale them by the random quantity s/n, then the distribution of the random variable
generated has an exponential tail with respect to t.

Lemma 4.2 (Hitting Lemma). Fix A as in the previous definition. If s is drawn uniformly at
random from S, then with probability at least 99/100.

sup
t>0

Ct(s)
t

<
2

100 . (2)

We defer the proof of Lemma 4.2 to Appendix A, and proceed to show how to use it in order
to bound the contribution of various types of queries to the distinguishability of D1 and D2 (in
particular, we will apply Lemma 4.2 to the set of query sizes {a1, . . . , aq}.)
Recall that the ai’s are non-increasing. If aq′sn ≤ 1 let q′ def= q + 1, otherwise define q′ as the largest
integer such that aq′s

n > 1. We partition the queries made by T in two: A1, . . . , Aq′ are said to be
big, while Aq′+1, . . . , Aq are small queries.

Lemma 4.3. With probability at least 1 − 2−10, a random distribution from D1 or from D2 does
not intersect with any small query.

Proof. Let s be the random size drawn for the definition of the instances. We first claim that
E[
∣∣Aq′+j ∩ S∣∣] ≤ β−50j for all j ≥ 1, where the expectation is over the uniform choice of set S1 for

23

D1. Indeed, by contradiction suppose there is a j ≥ 1 such that E[
∣∣Aq′+j ∩ S∣∣] = aq′+js

n > β−50j .
By definition of q′, for 1 ≤ i ≤ j,

1 ≥ aq′+is

n
> β−50j .

Therefore, the queries Aq′ , Aq′+1, . . . , Aq′+j contribute to C50j , and we obtain C50j
50j ≥

j
50j ≥

2
100 ,

contradicting Lemma 4.2. Thus, the expected intersection can be bounded as follows:

E[
∣∣(Aq′+1 ∪Aq′+2 · · · ∪Aq) ∩ S

∣∣] ≤ E[
∣∣Aq′+1 ∩ S

∣∣] + E[
∣∣Aq′+2 ∩ S

∣∣] + · · ·+ E[|Aq ∩ S|]
≤ β−50 + β−100 + . . .

≤ 2−12,

for β ≥
√

2. From this, we obtain the result holds for D1 by Markov’s inequality. The same applies
to D2 with probability of intersection at most 2−10, proving the lemma.

We now turn our attention to the sets with large intersections. We will show that under D1 and
D2, the output of querying the sets A1, . . . Aq′ are indistinguishable from simply picking elements
uniformly from the sets A1, . . . , Aq′ . More precisely, we establish the following.

Lemma 4.4. Let η∗ = 2−10 and ηs = 1/100; and fix ` ∈ {1, 2}. At least an 1 − ηs fraction of
elements s1, . . . , sq′ ∈ A1 ×A2, . . . , Aq′ satisfy

Pr
j

[
(s1, . . . , sq′)

]
∈ [1− 5η∗, 1 + 5η∗] · 1

|A1| . . .
∣∣Aq′∣∣ ,

where Prj
[
(s1, . . . , sq′)

]
denotes the probability that s1 . . . sq′ are the output of the queries A1, . . . , Aq′

under CONDD`.

As this holds for most distributions in both D1 and D2, this implies the queries are indistin-
guishable from the product distribution over A1×A2, . . . , Aq′ (which is the one induced by the same
queries on the uniform distribution over [n]) in either case, with probability at least 1− ηs − 5η∗.

Proof of Lemma 4.4. From standard Chernoff-like concentration bounds for negatively correlated
random variables (see e.g. [DR96, Theorem 4.3]), we obtain

Claim 4.5. Suppose A is a set of size a, and S is a uniformly chosen random set of size s. Then, for
all η ∈ (0, 1], we have Pr

[
|A ∩ S| > (1 + η)asn

]
< e−η

2· as3n and Pr
[
|A ∩ S| < (1− η)asn

]
< e−η

2· as3n .

We use this to show that indeed all the |Ai ∩ S| concentrate around their expected values for
1 ≤ j ≤ q′. First note that, as a consequence of Lemma 4.2, it is the case that these expected values
satisfy aq′−js/n ≥ β50(j+1) for every 0 ≤ j ≤ q′−1 (with probability at least 99/100). Conditioning
on this, we first invoke Claim 4.5 on Aj with η = 3 · β20(j+1), and then apply a union bound to
obtain

Pr
[
∃j ∈ [q′] s.t. |Aj ∩ S| /∈

[
1− 4 · β−20(j+1), 1 + 4 · β−20(j+1)

]
· ajs
n

]
< e−β

10 (3)

i.e., with high probability all intersections simultaneously concentrate around their expected values.

24

Note that since s is at most n3/4, each Ai under consideration has size at least nβ50/n3/4 > n1/4.
Therefore, the probability that a random selection of elements from A1, . . . , Aq′ exhibits no collision
is at least

q′∏
i=1

|Ai| − q′

|Ai|
≥
(

1− q′

n1/4

)q′
≥ 1− (q′)2

n1/4 > 1− log2 n

n1/4 .

We henceforth condition on this event.
Let N =

(n
s

)
be the number of outcomes for the set S. We write N0 ≥ N(1 − e−β10) for the

number of such sets for which (3) holds. Let sq
′

1 denote s1 . . . sq′ . For a set of distinct (s1, . . . , sq′) ∈
A1 × · · · ×Aq′ , let N(sq

′

1) =
(n−q′
s−q′

)
be the number of sets of size s that contain sq

′

1 , and let N0(sq
′

1)
of them satisfy (3).

By Markov’s inequality, with probability at least 1 − e−β9 , for a randomly chosen sq
′

1 we have
N0(sq

′

1)/N(sq
′

1) > 1− e2−β9 . For any such sq
′

1 ,

Pr
[
sq
′

1

]
≥ N0(sq

′

1)
N

·
q′∏
i=1

1
|Ai ∩ S|

≥ (1− e2−β9) s(s− 1) . . . (s− q′ + 1)
n(n− 1) . . . (n− q′ + 1) · (1− 4 · β−19)

q′∏
i=1

n

ais

≥ (1− 6 · β−19)
q′∏
i=1

1
ai
,

for large n and as |S| > n1/4. Since the sum of probabilities of elements is at most 1, the other side
of the inequality in Lemma 4.4 follows.

Proof of Theorem 1.2 and Theorem 1.3. Let T1 (resp. T2, TU) be the distribution over transcripts
generated by the queries A1, . . . , Aq when given conditional access to the distribution D1 from a
no-instance (resp. D2, resp. uniform Un); that is, a distribution over q-tuples in A1×· · ·×Aq. Since
the queries were non-adaptive, we can break T1 (and similarly for T2, TU) in T big

1 ×T small
1 according

to q′, and use Lemma 4.4 and Lemma 4.3 separately to obtain dTV(T1, T2) ≤ ηs + η∗+ 2−10 < 1/50
and dTV(T1, TU) ≤ ηs+η∗+ 2−10 < 1/50 (for the latter, recalling that queries that do not intersect
the support receive samples exactly uniformly distributed in the query set) – thus establishing both
theorems.

5 An Upper Bound for Support Size Estimation
In this section, we prove our upper bound for constant-factor support size estimation, reproduced
below:

Theorem 1.4 (Adaptive Support Size Estimation). Let τ > 0 be any constant. There exists
an adaptive algorithm which, given COND access to an unknown distribution D on [n] which has
minimum non-zero probability τ/n and accuracy parameter ε makes Õ

(
(log logn)/ε3) queries to

the oracle and outputs a value ω̃ such that the following holds. With probability at least 2/3,
ω̃ ∈ [1

1+ε · ω, (1 + ε) · ω], where ω = |supp(D)|.

Before describing and analyzing our algorithm, we shall need the following results, that we
will use as subroutines: the first one will help us detecting when the support is already dense.
The second, assuming the support is sparse enough, will enable us to find an element with zero

25

probability mass, which can afterwards be used as a “reference” to verify whether any given element
is inside or outside the support. Finally, the last one will use such a reference point to check whether
a candidate support size σ is smaller or significantly bigger than the actual support size.

Lemma 5.1. Given τ > 0 and COND access to a distribution D such that each support element
has probability at least τ/n, as well as parameters ε ∈ (0, 1/2), δ ∈ (0, 1), there exists an algorithm
TestSmallSupport (Algorithm 2) that makes Õ

(
1/(τε2) + 1/τ2) · log(1/δ) queries to the oracle,

and satisfies the following. (i) If supp(D) ≥ (1 − ε/2)n, then it outputs ACCEPT with probability
at least 1− δ; (ii) if supp(D) ≤ (1− ε)n, then it outputs REJECT with probability at least 1− δ.

Lemma 5.2. Given COND access to a distribution D, an upper bound m < n on supp(D), as
well as parameter δ ∈ (0, 1), there exists an algorithm GetNonSupport (Algorithm 3) that makes
Õ
(
log2 1

δ log−2 n
m

)
queries to the oracle, and returns an element r ∈ [n] such that r /∈ supp(D) with

probability at least 1− δ.

Lemma 5.3. Given COND access to a distribution D, inputs σ ≥ 2 and r /∈ supp(D), as well as
parameters ε ∈ (0, 1/2), δ ∈ (0, 1), there exists an algorithm IsAtMostSupportSize (Algorithm 4)
that makes Õ

(
1/ε2) log(1/δ) queries to the oracle, and satisfies the following. The algorithm returns

either yes or no, and (i) if σ ≥ supp(D), then it outputs yes with probability at least 1 − δ; (ii) if
σ > (1 + ε) supp(D), then it outputs no with probability at least 1− δ.

We defer the proofs of these 3 lemmas to the next subsections, and now turn to the proof of
the theorem.

Proof. The algorithm is given in Algorithm 1, and at a high-level works as follows: if first checks
whether the support size is big (an 1− O(ε) fraction of the domain), in which case it can already
stop and return a good estimate. If this is not the case, however, then the support is sparse enough
to efficiently find an element r outside the support, by taking a few uniform points, comparing and
ordering them by probability mass (and keeping the lightest). This element r can then be used as
a reference point in a (doubly exponential) search for a good estimate: for each guess ω̃, a random
subset S of size roughly ω̃ is taken, a point x is drawn from DS , and x is compared to r to check if
D(x) > 0. If so, then S intersects the support, meaning that ω̃ is an upper bound on ω; repeating
until this is no longer the case results in an accurate estimate of ω.

Algorithm 1 EstimateSupportD
1: if TestSmallSupportD(ε, 1

10) returns ACCEPT then return ω̃ ← (1− ε2)n
2: end if
3: Call GetNonSupportD((1− ε

2)n, 1
10) to obtain a non-support reference point r.

4: for j from 0 to log1+ε log1+ε n do
5: Set ω̃ ← (1 + ε)(1+ε)j .
6: Call IsAtMostSupportSizeD(ω̃, r, ε, 1

100·(j+1)2) to check if ω̃ is an upper bound on ω.
7: if the call returned no then
8: Perform a binary search on {(1 + ε)j−1, . . . , (1 + ε)j} to find i∗, the smallest i ≥ 2 such

that IsAtMostSupportSizeD((1 + ε)i, r, ε, 1
10(j+1)) returns no.

9: return ω̃ ← (1 + ε)i∗−1.
10: end if
11: end for

26

In the rest of this section, we formalize and rigorously argue the above. Conditioning on each of
the calls to the subroutines TestSmallSupport, GetNonSupport and IsAtMostSupportSize
being correct (which overall happens except with probability at most 1/10+1/10+

∑∞
j=1 1/(100j2)+

1/10 < 1/3 by a union bound), we show that the output ω̃ of EstimateSupport is indeed within
a factor (1 + ε) of ω.
• If the test on Step 1 passes, then by Lemma 5.1 we must have supp(D) > (1 − ε)n. Thus,

the estimate we output is correct, as [(1− ε)n, n] ⊆ [ω̃/(1 + ε), (1 + ε)ω̃].
• Otherwise, if it does not then by Lemma 5.1 it must be the case that supp(D) < (1− ε/2)n.

Therefore, if we reach Step 3 then (1−ε/2)n is indeed an upper bound on ω, and GetNonSupport
will return a point r /∈ supp(D) as expected. The analysis of the rest of the algorithm is straight-
forward: from the guarantee of IsAtMostSupportSize, the binary search will be performed for
the first index j such that ω ∈ [(1 + ε)(1+ε)j−1

, (1 + ε)(1+ε)j]; and will be on a set of (1 + ε)j−1

values. Similarly, for the value i∗ eventually obtained, it must be the case that (1 + ε)i∗ > ω (by
contrapositive, as no was returned by the subroutine) but (1 + ε)i∗−1 ≤ (1 + ε)ω (again, as the
subroutine returned yes). But then, ω̃ = (1 + ε)i∗−1 ∈ (ω/(1 + ε), (1 + ε)ω] as claimed.

Query complexity. The query complexity of our algorithm originates from the following different
steps:
• the call to TestSmallSupport, which from Lemma 5.1 costs Õ

(
1/ε2) queries;

• the call to GetNonSupport, on Step 3, that from the choice of the upper bound also costs
Õ
(
1/ε2) queries;

• the (at most) log1+ε log1+ε n = O((log logn)/ε) calls to IsAtMostSupportSize on Step 6.
Observing that the query complexity of IsAtMostSupportSize is only Õ

(
1/ε2) · log(1/δ),

and from the choice of δ = 1
(j+1)2 at the j-th iteration this step costs at most

Õ

(1
ε2

)
·

log1+ε log1+ε n∑
j=1

O
(
log(j2)

)
= Õ

(1
ε2 log1+ε log1+ε n

)
= Õ

(1
ε3 log1+ε log1+ε n

)

queries.
• Similarly, Step 8 results in at most j ≤ log logn calls to IsAtMostSupportSize with δ set to

1/(10(j + 1)), again costing Õ
(

1
ε2

)
· log j = Õ

(
1
ε2 log1+ε log1+ε n

)
= Õ

(
1
ε3 log logn

)
queries.

Gathering all terms, the overall query complexity is Õ
(

log logn
ε3

)
, as claimed.

5.1 Proof of Lemma 5.1.

Hereafter, we assume without loss of generality that τ < 2: indeed, if τ ≥ 2 then the support is of
size at most n/2, and it suffices to output REJECT to meet the requirements of the lemma. We will
rely on the (easy) fact below, which ensures that any distribution with dense support and minimum
non-zero probability τ/n put significant mass on “light” elements:

Fact 5.4. Fix any ε ∈ [0, 1). Assume D satisfies both supp(D) ≥ (1 − ε)n and D(x) ≥ τ/n for
x ∈ supp(D). Then, setting Lε

def= { x ∈ [n] : D(x) ∈ [τ/n, 2/n] }, we have |Lε| ≥ (1/2 − ε)n and
D(Lε) ≥ (1/2− ε)τ .

27

Proof. As the second claim follows directly from the first and the minimum mass of elements of
Lε, it suffices to prove that |Lε| ≥ (1/2− ε)n. This follows from observing that

1 = D([n]) ≥ D([n] \ Lε) ≥ (|supp(D)| −|Lε|)
2
n
≥ 2(1− ε)− 2|Lε|

n

and rearranging the terms.

Description and intuition. The algorithm (as described in Algorithm 2) works as follows:
it first takes enough uniformly distributed samples s1, . . . , sm to get (with high probability) an
accurate enough fraction of them falling in the support to distinguish between the two cases. The
issue is now to detect those mj ’s which indeed are support elements; note that we do not care about
underestimating this fraction in case (b) (when the support is at most (1− ε)n, but importantly do
not want to underestimate it in case (a) (when the support size is at least (1− ε/2)n). To perform
this detection, we take constantly many samples according to D (which are therefore ensured to be
in the support), and use pairwise conditional queries to sort them by increasing probability mass
(up to approximation imprecision), and keep only the lightest of them, t. In case (a), we now from
Fact 5.4 that with high probability our t has mass in [1/n, 2/n], and will therefore be either much
lighter than or comparable to any support element: this will ensure that in case (a) we do detect
all of the mj ’s that are in the support.

This also works in case (b), even though Fact 5.4 does not give us any guarantee on the mass
of t. Indeed, either t turns out to be light (and then the same argument ensures us our estimate
of the number of “support” mj ’s is good), or t is too heavy – and then our estimate will end up
being smaller than the true value. But this is fine, as the latter this only means we will reject the
distribution (as we should, since we are in the small-support case).

Correctness. Let η be the fraction of the sj ’s that are in the support of the distribution.
By a multiplicative Chernoff bound and a suitable constant in our choice of m, we get that (i)
if supp(D) ≥ 1 − ε/2, then Pr[η < 1− 3ε/4] ≤ 1/12, while (ii) if supp(D) ≤ 1 − ε/2, then
Pr[η ≥ 1− 3ε/4] ≤ 1/12. We hereafter condition on this (i.e., η being a good enough estimate).
We also condition on all calls to Compare yielding results as per specified, which by a union bound
overall happens except with probability 1/12 + 1/12 = 1/6, and break the rest of the analysis in
two cases.
(a) Since the support size ω is in this case at least (1−ε/2)n, from Fact 5.4 we get that D(Lε/2) ≥

1−ε
2 τ ≥ τ

4 . Therefore, except with probability at most (1− τ/4)k < 1/12, at least one of the
tj ’s will belong to Lε/2. When this happens, and by the choice of parameters in the calls to
Compare, we get that t ∈ Lε/2; that is D(t) ∈ [τ/n, 2/n]. But then the calls to the routine
on Step 15 will always return either a value (since t is “comparable” to all x ∈ Lε/2 – i.e.,
has probability within a factor 2/τ of them) or High (possible for those sj ’s that have weight
greater than 2/n), unless sj has mass 0 (that is, is not in the support). Therefore, the fraction
of points marked as support is exactly η, which by the foregoing discussion is at least 1−3ε/4:
the algorithm returns ACCEPT at Step 20.

(b) Conversely, if ω ≤ (1 − ε)n, there will be a fraction 1 − η > 3ε/4 of the sj ’s having mass 0.
However, no matter what t is it will still be in the support and therefore have D(t) ≥ τ/n:
for these sj ’s, the call to Compare on Step 15 can thus only return Low. This means that

28

Algorithm 2 TestSmallSupportD
Require: COND access to D; accuracy parameter ε ∈ (0, 1/2), threshold τ > 0, probability of

failure δ
1: Repeat the following O(log(1/δ)) times and output the majority vote.
2: loop
3: Draw m

def= Θ
(

1
ε2

)
independent samples s1, . . . , sm ∼ U .

4: Draw k
def= Θ

(
1
τ

)
independent samples t1, . . . , tk ∼ D.

5: for all 1 ≤ i < j ≤ k do . Order the tj ’s
6: Call Compare({ti}, {tj}, η = 1

2 ,K = 2, 1
4k2) to get a 2-approx. ρ of D(tj)

D(ti) , High or Low.
7: if Compare returned High or a value ρ then
8: Record ti � tj
9: else

10: Record tj ≺ tj
11: end if
12: end for
13: Set t to be (any of the) smallest tj ’s, according to �.
14: for all 1 ≤ j ≤ m do . Find the fraction of support elements among the mj ’s
15: Call Compare({t}, {sj}, η = 1

2 ,K = 2
τ ,

1
4m) to get either a value ρ, High or Low.

16: if Compare returned High or a value ρ ≥ 1/2 then
17: Record sj as “support.”
18: end if
19: end for
20: if the number of sj ’s marked “support” is at least (1− 3

4ε)m then return ACCEPT
21: else return REJECT
22: end if
23: end loop

there can only be less than (1 − 3
4ε)m points marked “support” among the sj ’s, and hence

that the algorithm will output REJECT as it should.
Overall, the inner loop of the algorithm thus only fails with probability at most 1/12+1/6+1/12 =
1/3 (respectively for η failing to be a good estimate, the calls to Compare failing to yield results as
guaranteed, or no tj hitting Lε/2 in case (a)). Repeating independently log(1/δ) times and taking
the majority vote boosts the probability of success to 1− δ.

Query complexity. The sample complexity comes from the k2 calls on Step 4 (each costing
O(log k) queries) and the m calls on Step 15 (each costing O

(
1
τ logm

)
queries). By the set-

ting of m and because of the log(1/δ) repetitions, this results in an overall query complexity
O
((

1
τ2 log 1

τ + 1
τε2 log 1

ε

)
log 1

δ

)
.

5.2 Proof of Lemma 5.2.

As described in Algorithm 3, the subroutine is fairly simple: using its knowledge of an upperbound
on the support size, it takes enough uniformly distributed samples to have (with high probability)

29

at least one falling outside the support. Then, it uses the conditional oracle to “order” these samples
according to their probability mass, and returns the lightest of them – i.e., one with zero probability
mass.

Algorithm 3 GetNonSupportD(m, δ)
Require: COND access to D; upper bound m on supp(D), probability of failure δ
Ensure: Returns r ∈ [n] such that, with probability at least 1− δ, r /∈ supp(D)
1: Set k def=

⌈
log 2

δ log−1 n
m

⌉
.

2: Draw independently k points s1, . . . , sk ∼ U[n]
3: for all 1 ≤ i < j ≤ k do
4: Call Compare({si}, {sj}, η = 1

2 ,K = 2, δ
2k2) to get a 2-approx. ρ of D(sj)

D(si) , High or Low.
5: if Compare returned High or a value ρ then
6: Record si � sj
7: else
8: Record sj ≺ sj
9: end if

10: end for
11: return arg min�{s1, . . . , sk} . Return (any) minimal element for �.

Correctness. It is straightforward to see that provided at least one of the sj ’s falls outside the
support and that all calls to Compare behave as expected, then the procedure returns one of the
“lightest” sj ’s, i.e. a non-support element. By a union bound, the latter holds with probability at
least 1 − δ/2; as for the former, since m is by assumption an upper bound on the support size it
holds with probability at least 1−(m/n)k ≥ 1−δ/2 (from our setting of k). Overall, the procedure’s
output is correct with probability at least 1− δ, as claimed.

Query complexity. The query complexity of GetNonSupport is due to the
(k

2
)
calls to Compare,

and is therefore O
(
k2 log k

δ

)
because of our setting for η andK (which is in turn Õ

(
log2 1

δ log−2 n
m

)
).

(In our case, we shall eventually take m = (1− ε/2)n and δ = 1/10, thus getting k = O(1/ε) and
a query complexity of Õ

(
1/ε2).)

5.3 Proof of Lemma 5.3

Our final subroutine, described in Algorithm 4, essentially derives from the following observation:
a random set S of size (approximately) σ obtained by including independently each element of the
domain with probability 1/σ will intersect the support on ω/σ points on expectation. What we
can test given our reference point r /∈ supp(D), however, is only whether S ∩ supp(D) = ∅. But
this is enough, as by repeating sufficiently many times (taking a random S and testing whether
it intersects the support at all) we can distinguish between the two cases we are interested in.
Indeed, the expected fraction of times S includes a support element in either cases is known to
the algorithm and differs by roughly Ω(ε), so O

(
1/ε2) repetitions are enough to tell the two cases

apart.

30

Algorithm 4 IsAtMostSupportSizeD(σ, r, ε, δ)
Require: COND access to D; size σ ≥ 2, non-support element r, accuracy ε, probability of failure

δ
Ensure: Returns, with probability at least 1−δ, yes if σ ≤|supp(D)| and no if σ > (1+ε)|supp(D)|.
1: Set α←

(
1− 1

σ

)σ
∈ [1

4 , e
−1], τ ← α(α−

ε
2 − 1) = Θ(ε).

2: Repeat the following O(log(1/δ)) times and output the majority vote.
3: loop
4: for m = O

(
1
τ2

)
times do

5: Draw a subset S ⊆ [n] by including independently each x ∈ [n] with probability 1/σ.
6: Draw x ∼ DS .
7: Call Compare({x}, {r}, η = 1

2 ,K = 1, 1
100m) . Low if S ∩ supp(D) 6= ∅; ρ ∈ [1

2 , 2) o.w.
8: Record yes if Compare returned Low, no otherwise.
9: end for

10: return yes if at least m
(
α+ τ

2
)
“yes”’s were recorded, no otherwise. . Thresholding.

11: end loop

Correctness. We condition on all calls to Compare being correct: by a union bound, this overall
happens with probability at least 99/100. We shall consider the two cases σ ≤ ω and σ > (1 + ε)ω,
and focus on the difference of probability p of recording yes on Step 8 between the two, in any fixed
of the m iterations. In both cases, note p is exactly (1− 1/σ)ω.
• If σ ≤ ω, then we have p ≤

(
1− 1

σ

)σ
= α.

• If σ > (1 + ε)ω, then p >
(
1− 1

σ

)σ/(1+ε)
>
(
1− 1

σ

)σ(1−ε/2)
= α1−ε/2.

As α ∈ [1
4 , e
−1], the difference between the two is τ = α(α−ε/2 − 1) = Θ(ε). Thus, repeating the

atomic test of Step 4 O
(
1/τ2) before thresholding at Step 10 yields the right answer with constant

probability, then brought to 1− δ by the outer repeating and majority vote.

Query complexity. Each call to Compare at Step 7 costs O(logm) queries, and is in total
repeated O(m log(1/δ) times. By the setting of m and τ , the overall query complexity is therefore
O
(

1
ε2 log 1

ε log 1
δ

)
.

5.4 A Non-Adaptive Upper Bound

In this section, we sketch how similar – yet less involved – ideas can be used to derive a non-
adaptive upper bound for support size estimation. For simplicity, we describe the algorithm for
2-approximation: adapting it to general (1 + ε)-approximation is straightforward.

The high-level idea is to perform a simple binary search (instead of the double exponential
search from the preceding section) to identify the greatest lower bound on the support size of the
form k = 2j . For each guess k ∈ {2, 4, 8 . . . , n}, we pick uniformly at random a set S ⊆ [n] of
cardinality k, and check whether DS is uniform using the non-adaptive tester of Chakraborty et
al. [CFGM13, Theorem 4.1.2]. If DS is found to be uniform for all values of k, we return n as our
estimate (as the distribution is close to uniform on [n]); otherwise, we return n/k, for the smallest
k on which DS was found to be far from uniform. Indeed, DS can only be far from uniform if S
contains points from the support of D, which intuitively only happens if n/k = Ω(1).

31

To be more precise, the algorithm proceeds as follows, where τ > 0 is an absolute constant:
for all k ∈ {2, 4, . . . , n} do

Set a counter ck ← 0.
for m = O(log logn) times do

Pick uniformly at random a set S ⊆ [n] of k elements.
Test (non-adaptively) uniformity of DS on S, with the tester of [CFGM13].
if the tester rejects then increment ck.
end if

end for
if ck > τ ·m then return ω̃ ← n

k .
end if

end for
return ω̃ ← n.

The query complexity is easily seen to be poly logn, from the Õ(logn) calls to the poly(logn) tester
of [CFGM13, Theorem 4.1.2]. As for correctness, it follows from the fact that for any set S with
mass D(S) > 0 which contains at least an η fraction of points outside the support, it holds that
DS is η-far from US .

Acknowledgments. Clément Canonne would like to thank Dana Ron and Rocco Servedio for the
many helpful discussions and remarks that influenced the lower bound construction of Section 3.

References
[ADJ+11] Jayadev Acharya, Hirakendu Das, Ashkan Jafarpour, Alon Orlitsky, and Shengjun Pan.

Competitive closeness testing. In Sham M. Kakade and Ulrike von Luxburg, editors,
COLT, volume 19 of JMLR Proceedings, pages 47–68. JMLR.org, 2011. 1

[ADJ+12] Jayadev Acharya, Hirakendu Das, Ashkan Jafarpour, Alon Orlitsky, Shengjun Pan,
and Ananda Theertha Suresh. Competitive classification and closeness testing. In
Proceedings of 25th COLT, pages 22.1–22.18, 2012. 1

[BFF+01] Tuğkan Batu, Eldar Fischer, Lance Fortnow, Ravi Kumar, Ronitt Rubinfeld, and
Patrick White. Testing random variables for independence and identity. In Proceedings
of FOCS, pages 442–451, 2001. 1

[BFR+00] Tuğkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D. Smith, and Patrick White.
Testing that distributions are close. In Proceedings of FOCS, pages 189–197, 2000. 1,
5.3

[BFR+10] Tuğkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D. Smith, and Patrick White.
Testing closeness of discrete distributions. (abs/1009.5397), 2010. This is a long version
of [BFR+00]. 1.1, 1.1, 1.2

[BFRV11] Arnab Bhattacharyya, Eldar Fischer, Ronitt Rubinfeld, and Paul Valiant. Testing
monotonicity of distributions over general partial orders. In Proceedings of ITCS, pages
239–252, 2011. 1

32

[BKR04] Tuğkan Batu, Ravi Kumar, and Ronitt Rubinfeld. Sublinear algorithms for testing
monotone and unimodal distributions. In Proceedings of STOC, pages 381–390, New
York, NY, USA, 2004. ACM. 1

[Can15] Clément L. Canonne. A Survey on Distribution Testing: your data is Big, but is it Blue?
Electronic Colloquium on Computational Complexity (ECCC), (TR15-063), April 2015.
1

[CDVV14] Siu-On Chan, Ilias Diakonikolas, Gregory Valiant, and Paul Valiant. Optimal algo-
rithms for testing closeness of discrete distributions. In Proceedings of SODA, pages
1193–1203. Society for Industrial and Applied Mathematics (SIAM), 2014. 1, 1.1, 1.2

[CFGM13] Sourav Chakraborty, Eldar Fischer, Yonatan Goldhirsh, and Arie Matsliah. On the
power of conditional samples in distribution testing. In Proceedings of ITCS, pages
561–580, New York, NY, USA, 2013. ACM. (document), 1, 1.1, 1.1, 1.2, 1.2, 1.2, 1.2,
1.3, 1.3, 2.1, 2.2, 3.2.1, 5.4, 5

[CR14] Clément L. Canonne and Ronitt Rubinfeld. Testing probability distributions underlying
aggregated data. In Proceedings of ICALP, pages 283–295, 2014. 1

[CRS15] Clément L. Canonne, Dana Ron, and Rocco A. Servedio. Testing probability distribu-
tions using conditional samples. SIAM Journal on Computing, 2015. To appear. Also
available on arXiv at abs/1211.2664. (document), 1, 1.1, 1.1, 2, 1.3, 2.1, 3.1

[DR96] Devdatt Dubhashi and Desh Ranjan. Balls and Bins: A Study in Negative Dependence.
Random Structures and Algorithms, 13:99–124, 1996. 3.2.2, 4

[FJO+15] Moein Falahatgar, Ashkan Jafarpour, Alon Orlitsky, Venkatadheeraj Pichapathi, and
Ananda Theertha Suresh. Faster algorithms for testing under conditional sampling.
(abs/1504.04103), April 2015. (document), 1.1, 1.1, 1.2, 1.2

[GMV06] Sudipto Guha, Andrew McGregor, and Suresh Venkatasubramanian. Streaming and
sublinear approximation of entropy and information distances. In Proceedings of SODA,
pages 733–742, Philadelphia, PA, USA, 2006. Society for Industrial and Applied Math-
ematics (SIAM). 1

[GR00] Oded Goldreich and Dana Ron. On testing expansion in bounded-degree graphs. Tech-
nical Report TR00-020, Electronic Colloquium on Computational Complexity (ECCC),
2000. 1, 1.1, 1.2

[ILR12] Piotr Indyk, Reut Levi, and Ronitt Rubinfeld. Approximating and Testing k-Histogram
Distributions in Sub-linear Time. In Proceedings of PODS, pages 15–22, 2012. 1

[LRR13] Reut Levi, Dana Ron, and Ronitt Rubinfeld. Testing properties of collections of distri-
butions. Theory of Computing, 9(8):295–347, 2013. 1

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge Uni-
versity Press, New York, NY, USA, 1995. 2.3

33

http://arxiv.org/abs/1211.2664

[Pan08] Liam Paninski. A coincidence-based test for uniformity given very sparsely sampled
discrete data. IEEE Transactions on Information Theory, 54(10):4750–4755, 2008. 1,
1.1, 1.2

[RRSS09] Sofya Raskhodnikova, Dana Ron, Amir Shpilka, and Adam Smith. Strong lower bounds
for approximating distributions support size and the distinct elements problem. SIAM
Journal on Computing, 39(3):813–842, 2009. 1.1

[RS09] Ronitt Rubinfeld and Rocco A. Servedio. Testing monotone high-dimensional distribu-
tions. Random Structures and Algorithms, 34(1):24–44, January 2009. 1

[RT14] Dana Ron and Gilad Tsur. The power of an example: Hidden set size approximation
using group queries and conditional sampling. CoRR, abs/1404.5568, 2014. (document),
1.2.1, 1.3

[Rub12] Ronitt Rubinfeld. Taming Big Probability Distributions. XRDS, 19(1):24–28, Septem-
ber 2012. 1

[Sto85] L. Stockmeyer. On approximation algorithms for #P. SIAM Journal on Computing,
14(4):849–861, 1985. 1.3

[Sub] List of Open Problems in Sublinear Algorithms: Problem 66. http://sublinear.info/
66. Bertinoro Workshop on Sublinear Algorithms 2014 (suggested by Eldar Fischer).
(document), 1.1, 1.2

[Val11] Paul Valiant. Testing symmetric properties of distributions. SIAM Journal on Com-
puting, 40(6):1927–1968, 2011. 1.1

[VV10a] Gregory Valiant and Paul Valiant. A CLT and tight lower bounds for estimating entropy.
Electronic Colloquium on Computational Complexity (ECCC), (TR10-179), 2010. 1.1,
1.2, 5.3

[VV10b] Gregory Valiant and Paul Valiant. Estimating the unseen: A sublinear-sample canon-
ical estimator of distributions. Electronic Colloquium on Computational Complexity
(ECCC), (TR10-180), 2010. 5.3

[VV11] Gregory Valiant and Paul Valiant. The power of linear estimators. In Proceedings of
FOCS, pages 403–412, October 2011. See also [VV10a] and [VV10b]. 1.1

[VV14] Gregory Valiant and Paul Valiant. An automatic inequality prover and instance optimal
identity testing. In Proceedings of FOCS, 2014. 1, 1.1

34

http://sublinear.info/66
http://sublinear.info/66

A Proof of Lemma 4.2
We now give the proof of the “Hitting Lemma” (Lemma 4.2). We take the logarithms to indicate
that a set ai contributes to Ct with a set of size s if and only if log s ∈ [log(n/a)− t, log(n/a) + t].
Indeed, we can restate the wishful lemma in an additive form. Let A = {a1, . . . , aq} be any set of
points in [0, logn]. Here the new ai’s are related to the original ai’s, i.e. they are log(n/ai). For a
point x ∈ [0, n], let `xj (rxj respectively) denote the distance of x from the jth point to its left (right
respectively) from the set A. (So that x corresponds to log s.) Let

qx
def= min

j
min

{
`xj
j
,
rxj
j

}
.

For a constant c > 0, let Sc be the set of all points x such that qx < c. A point x violates the
hitting lemma if for some j,

min
{
`xj
j
,
rxj
j

}
< log β · 2

100 .

Therefore, we need to bound the size of Sc for c = 2 log β/100. We do this by proving the following.
(This will imply the Hitting Lemma, as q is at most logn/200 log β and the set of possible values
for x has size 1

2 logn.)
Lemma A.1. Let |Sc| be the measure of Sc. Then |Sc| ≤ 2cq.
Proof of Lemma A.1. We consider the set of points in Sc,` ⊂ Sc that satisfy `xj /j < c for some j,
and show that their measure is at most cq. An identical bound holds for the set of points of Sc for
which rxj /j < c. Let Sic,` ⊂ Sc,` be the set of points in Sc,` that satisfy mx < c with respect to the
set a1, . . . , ai. We will show by induction that |Sic,`| < ci.

For the first point a1, the set S1
c,` = [a1, a1 + c]. Suppose by induction that |Sic,`| < ci. Let xi be

the right-most point in the set Sic,`. Then it is clear that xi > ai, in fact xi ≥ ai + c. Furthermore,
either xi = n, or `xij /j = c for some j. Moreover, we claim that [ai, xi] ∈ Sic,`. Indeed, for the same
j that `xij /j < c, all points in [ai, xi] satisfy the condition. If xi = n, then the result holds trivially.
We therefore consider the point ai+1 and prove the inductive step for xi < n. There are two cases:
If ai+1 ≥ xi: In this case, Si+1

c,` = Sic,`∪ [ai+1, xi+1]. We have to show that xi+1 ≤ ai+1 +c. Suppose
to the contrary that xi+1 > ai+1 + c ≥ xi + c. Then there is a point ah for h ≤ i, such that
xi+1−ah
i+2−h < c, and then ai+1+c−ah

i+2−h < c, so that
ai+1 − ah
i+ 1− h < c,

however, this implies that ai+1 ∈ Sic,`, contradicting the assumption of this case.

If ai+1 < xi: In this case, Si+1
c,` = Sic,` ∪ [xi, xi+1]. We have to show that xi+1 ≤ xi + c. Suppose

on the contrary that xi+1 > xi + c > ai+1 + c. Suppose h be the index such that xi+1−ah
i+2−h < c,

and therefore, xi+c−ahi+2−h < c, implying that
xi − ah
i+ 1− h < c,

contradicting that xi is the rightmost point of Sic,`.

35

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

