
Sculpting Quantum Speedups

Scott Aaronson
MIT

aaronson@csail.mit.edu

Shalev Ben-David
MIT

shalev@mit.edu

Abstract

Given a problem which is intractable for both quantum and classical algorithms, can we
find a sub-problem for which quantum algorithms provide an exponential advantage? We refer
to this problem as the “sculpting problem.” In this work, we give a full characterization of
sculptable functions in the query complexity setting. We show that a total function f can be
restricted to a promise P such that Q(f |P) = O(polylogN) and R(f |P) = NΩ(1), if and only if
f has a large number of inputs with large certificate complexity. The proof uses some interesting
techniques: for one direction, we introduce new relationships between randomized and quantum
query complexity in various settings, and for the other direction, we use a recent result from
communication complexity due to Klartag and Regev. We also characterize sculpting for other
query complexity measures, such as R(f) vs. R0(f) and R0(f) vs. D(f).

Along the way, we prove some new relationships for quantum query complexity: for example,
a nearly quadratic relationship between Q(f) and D(f) whenever the promise of f is small.
This contrasts with the recent super-quadratic query complexity separations, showing that the
maximum gap between classical and quantum query complexities is indeed quadratic in various
settings – just not for total functions!

Lastly, we investigate sculpting in the Turing machine model. We show that if there is
any BPP-bi-immune language in BQP, then every language outside BPP can be restricted to a
promise which places it in PromiseBQP but not in PromiseBPP. Under a weaker assumption,
that some problem in BQP is hard on average for P/poly, we show that every paddable language
outside BPP is sculptable in this way.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 203 (2015)

1 Introduction

When are quantum algorithms useful? In general, quantum algorithms are believed to provide
exponential speedups for certain structured problems, such as factoring [Sho97], but not for un-
structured problems like NP-complete problems.

In this work, we ask the question in a new way. Given a problem for which quantum algorithms
are not useful, can we nevertheless find a sub-problem on which they provide an exponential ad-
vantage over classical algorithms? We call this the “sculpting” question: our goal is to sculpt the
original intractable problem into a sub-problem that’s still classically intractable, but for which
there exists a fast quantum algorithm. The sculpting question arises, for example, in adiabatic
quantum computation: while it is not believed that adiabatic quantum computing can solve NP-
complete problems in polynomial time, a widely discussed question is whether there is a sub-problem
of SAT on which adiabatic computing provides an exponential advantage over classical algorithms.

We study the sculpting question primarily in the query complexity model. The utility of the
model comes from its relative tractability: for example, in query complexity, Shor’s period finding
algorithm provides a provable exponential speedup over any classical algorithm [Cle04].

In query complexity, we’re given a (possibly partial) function f : {0, 1}N → {0, 1} and an oracle
access to a string x ∈ {0, 1}N . The goal is to evaluate f(x) using as few oracle calls to the entries
of x as possible. The minimum number of queries required by an algorithm for computing f(x)
(over the worst-case choice of x) is the query complexity of f . If the algorithm in question is
deterministic, we denote this by D(f); if it is (bounded error) randomized, we denote this by R(f);
and if it is (bounded error) quantum, we denote it by Q(f).

In this query complexity setting, the sculpting question can be phrased as follows: given a
total function f : {0, 1}N → {0, 1} for which R(f) and Q(f) are both large (say, NΩ(1)), is there
a promise P ⊆ {0, 1}N such that f |P , the restriction of f to P , has Q(f |P) = O(polylogN) and
R(f |P) = NΩ(1)?

For example, if f is the OR function, such sculpting is not possible, as follows from [Aar06]. As
another example, if f is defined to be 1 when Simon’s condition is satisfied and 0 otherwise, then
sculpting is possible: the promise will simply restrict to inputs that either satisfy Simon’s condition
or are far from satisfying it; this promise suffices for an exponential quantum speedup [BFNR08].

We fully characterize the functions f for which such a promise exists. In particular, we show
that sufficiently “rich” functions, such as Parity or Majority, are sculptable. Our sculpting
construction uses communication complexity in a novel way. In the other direction, to prove non-
sculptability, we prove new query complexity relationships. As a corollary, we get nearly quadratic
relationships between classical and quantum query complexities for a wider class of functions than
previously known.

Results

H-indices

We introduce a new query complexity measure, H(Cf), defined as the maximum number h for
which there are 2h inputs to f with certificate complexity at least h. We call this the H-index
of certificate complexity (motivated by the citation H-index sometimes used to measure research
productivity [Hir05]). This quantity measures the number of inputs there are to a function f that
have large certificate complexity. We prove various properties of H(Cf); most notably, we show

1

that for total functions, it is nearly quadratically related to H(bsf), the H-index of block sensitivity.
This is analogous to the quadratic relationship between C and bs.

Sculpting in Query Complexity

Our main result is the following theorem, which neatly characterizes sculptability in the query
complexity model in terms of the H-index of certificate complexity.

Theorem 1. Let f : {0, 1}N → {0, 1} be a total function. Then there is a promise P ⊆ {0, 1}N
such that R(f |P) = NΩ(1) and Q(f |P) = No(1), if and only if H(Cf) = NΩ(1). Furthermore, in this
case we also have Q(f |P) = O(log2N).

This theorem follows as an immediate corollary of the following more general characterization
theorem.

Theorem 2. For all total functions f : {0, 1}N → {0, 1} and all promises P ⊆ {0, 1}N , we have

R(f |P) = O(Q(f |P)2 H(Cf)2).

Conversely, for all total functions f : {0, 1}N → {0, 1}, there is a promise P ⊆ {0, 1}N such that

R(f |P) = Ω

(
H(Cf)1/6

log13/6N

)
and Q(f |P) = O(log2 H(Cf)).

We also prove an analogous theorem for D vs. R0, showing that the same H(Cf) = NΩ(1)

condition also characterizes sculpting D(f) vs. R0(f). On the other hand, we show that sculpting
R0(f) vs. R(f) is always possible: for every total function f with R0(f) = NΩ(1), there is a promise
P such that R0(f |P) = NΩ(1) and R(f |P) = O(1).

Query Complexity on Small Promises

On the way to proving Theorem 2, we prove the following theorem, providing a quadratic rela-
tionship between Q(f) and D(f) when the domain of f is small. This provides a ironic twist to
the query complexity story: for a long time, it was believed that D(f) and Q(f) are quadratically
related when the domain of f is very large (in particular, for total functions). This conjecture was
recently disproven by [ABB+15] (who showed a D(f) ∼ Q(f)4 separation) and by [ABK15] (who
showed an f such that R(f) ∼ Q(f)2.5). Instead, we now show that the quadratic relationship
holds when the domain of f is very small.

Theorem 3. Let f : {0, 1}N → {0, 1} be a partial function, and let Dom(f) denote the domain of
f . Then

Q(f) = Ω

(√
D(f)

log |Dom(f)|

)
.

2

Query Complexity for Unbalanced Functions

We show two relationships similar to Theorem 3 that hold for functions whose domain is large, but
which are unbalanced: they contain very few 0-inputs compared to 1-inputs, or vice versa.

Theorem 4. Let f : {0, 1}N → {0, 1} be a partial function. Define the measure Bal(f) ∈ [0, N] as
Bal(f) := 1 + min{log |f−1(0)|, log |f−1(1)|} (or 0 if f is constant). Then

R(f) = O(Q(f)2 Bal(f))

D(f) = O(R0(f) Bal(f)).

A similar polynomial relationship between R0(f) and R(f) does not hold in general.

New Relationship for Total Functions

We prove the following new query complexity relationship for total functions, generalizing the
known relationship D(f) = O(Q(f)2 C(f)).

Theorem 5. Let f : {0, 1}N → {0, 1} be a total function. Then

D(f) = O(Q(f)2 H(
√

Cf)2).

Here H(
√

Cf) denotes the H-index of the square root of certificate complexity; this is the

maximum number h such that there are at least 2h inputs to f for which
√

C(f) is at least h. We
note that H(

√
Cf)2 ≤ C(f) for all total functions, so this is an improvement over the relationship

D(f) = O(Q(f)2 C(f)). Moreover, when f = OR, we have H(
√

Cf)2 = 1 and C(f) = N , so this
improvement is strict.

We remark that this result could let us improve the relationship D(f) = O(Q(f)6) if we could
show H(

√
Cf)2 = o(Q(f)4). Theorem 5 therefore provides a new approach for this long-standing

open problem.

Sculpting in the Turing Machine Model

In Section 8, we examine sculpting in the Turing machine model. We say that a language L is
sculptable if there is a promise set P such that the promise problem of deciding if an input from
P is in L is in PromiseBQP but not in PromiseBPP. We prove two sculptability theorems, both of
them providing evidence that most or all languages outside of BPP are sculptable.

Theorem 6. Assume PromiseBQP is hard on average for P/poly. Then every paddable language
outside of BPP is sculptable.

Theorem 7. Assume there exists a BPP-bi-immune language in BQP. Then every language outside
of BPP is sculptable.

For the definitions of paddability and bi-immunity, see Section 8. These theorems assume very
little about BQP and BPP, and analogous statements hold for other pairs of complexity classes.

3

2 Preliminaries

For a (possibly partial) function f : {0, 1}N → {0, 1}, we use D(f), R0(f), R(f), and Q(f) to
denote the deterministic query complexity, zero-error randomized query complexity, bounded-error
randomized query complexity, and bounded-error quantum query complexity of f , respectively. For
the definitions of these measures, see [BdW02].

A partial assignment is a string p in {0, 1, ∗}N that represents partial knowledge of a string in
{0, 1}N . For x ∈ {0, 1}N , we say that p is a partial assignment of x if x extends p; that is, if x
and p agree on all the non-∗ entries of p. A partial assignment p for x is called a certificate for x
if all strings that extend p have that same value under f as x; that is, if for all y ∈ {0, 1}N that
extend p, we have f(y) = f(x). The certificate complexity of f on input x, denoted by Cf (x), is
the minimum number of bits in any certificate of x with respect to f . The certificate complexity
of f , denoted by C(f), is defined as the maximum of Cf (x) over all strings x in the domain of f .

The certificate complexity Cf (x) can be thought of as the deterministic query complexity of f
given the promise that the input is either x or else an input y such that f(x) 6= f(y). Motivated by
this observation, Aaronson [Aar06] defined the randomized certificate complexity of x, denoted by
RCf (x), to be the (bounded-error) randomized query complexity of f on this promise. He defined
the quantum certificate complexity QCf (x) analogously. As with C, we use RC(f) to denote the
maximum of RCf (x) over all x in the domain of f , and define QC(f) similarly.

For any string x ∈ {0, 1}N and set of bits B, denote by xB the string x with the bits in B
flipped. For any f : {0, 1}N → {0, 1}, if f(x) 6= f(xB), we say that B is a sensitive block for x with
respect to f . The block sensitivity of x, denoted by bsf (x), is the maximum number of disjoint
sensitive blocks for x. Note that the block sensitivity is the packing number of the collection of
sensitive blocks of x. It can be seen that Cf (x) can be interpreted as the hitting number of that
collection (the minimum number of bits required to hit all the blocks). Moreover, RCf (x) is simply
the fractional packing number (which equals the fractional hitting number). In other words, RCf (x)
can be interpreted as the fractional block sensitivity (or fractional certificate complexity). These
observations are implicit in [Aar06], and were made explicit in [KT13].

Actually, the fractional block sensitivity differs by a constant factor from Aaronson’s original
definition of RC. In this work we will use RC to denote the fractional block sensitivity. Another
property of RC that we will need is that 1/RCf (x) is equal to the minimum infinity-norm distance
between x and the convex hull of the set of inputs y such that f(y) 6= f(x). That is, if f(x) = 0
and S = f−1(1), we have

1

RCf (x)
= min

µ∈∆S

max
i

Pr
y∼µ

[xi 6= yi],

where ∆S is the set of all probability distributions over S (equivalently, the convex hull of S). In
particular, this minimum is attained, so there is a probability distribution µ over f−1(1) such that
for all i = 1, 2, . . . , n, if we sample y ∼ µ we get Pr[yi 6= xi] ≤ 1/RCf (x).

Clearly, for all f : {0, 1}N → {0, 1} we have

{QC(f), bs(f)} ≤ RC(f) ≤ {C(f),R(f)} ≤ R0(f) ≤ D(f),

with Q(f) lying between QC(f) and R(f). Aaronson [Aar06] showed that RCf (x) = Θ(QCf (x)2)
for all f and x, so in particular, RC(f) = Θ(QC(f)2). In addition, when f is total, we can relate
all these measures to each other: we have

D(f) = O(bs(f)3) = O(RC(f)3) = O(QC(f)6) = O(Q(f)6).

4

Balance and H Indices

We will use Dom(f) to denote the domain of a partial function f . We define Bal(f) to be 0 if
f is constant, and otherwise, to be the minimum of 1 + log |f−1(0)| and 1 + log |f−1(1)| (we use
log to denote logarithm base 2). Note that since |f−1(0)| + |f−1(1)| = |Dom(f)| ≤ 2N , we have
Bal(f) ≤ N . Thus Bal(f) ∈ [0, N].

We will use a new set of query complexity measures called H-indices (the name is motivated
by the H-index measure of citations, a common metric for research output). For a given function
g : {0, 1}N → [0,∞), we will define the H-index of g, denoted by H(g), as the maximum number h
such that there are at least 2h inputs with g(x) ≥ h. Alternatively, the H-index of g can be defined
as the minimum number h such that there are at most 2h inputs with g(x) > h. It is not obvious
that these definitions are equivalent (or even that the minimum and maximum are attained); we
prove this in Appendix A.

Note that H(g) ∈ [0, N], and H(g) ≤ maxx g(x). Also, if g(x) ≥ g′(x) for all x ∈ {0, 1}N , we
have H(g) ≥ H(g′).

We’ll primarily be interested in measures like H(Cf), H(RCf), and H(bsf). We have H(Cf) ≤
C(f), H(RCf) ≤ RC(f), and H(bsf) ≤ bs(f). We also have

H(bsf) ≤ H(RCf) ≤ H(Cf).

The H-index of certificate complexity can be much smaller than the certificate complexity itself.
For example, the OR function has only one certificate of size greater than 1, so H(COR) = 1, even
though C(OR) = n.

In Appendix A we show that if α : [0,∞)→ [0,∞) is an increasing function, then

H(α ◦ g) ≤ max{H(g), α(H(g))}.

In particular, this will imply H(C2
f) ≤ H(Cf)2.

Shattering and the Sauer-Shelah Lemma

For a set of indices A ⊆ {1, 2, . . . , N}, let S|A ⊆ {0, 1}|A| be the set of restrictions of each string in
S to the indices in A. We say A is shattered by S if S|A = {0, 1}|A|. In other words, A is shattered
by S if S has all possible behaviors on A. The Sauer-Shelah lemma [Sau72, She72] is a classic result
that upper-bounds the size of S in terms of the size of A. We will use the following corollary of it.

Lemma 8. Let S ⊆ {0, 1}N be a collection of strings. Then there is a shattered set of indices of
size at least

log |S|
log(N + 1)

.

Lemma 8 follows straightforwardly from the Sauer-Shelah lemma, as we prove in Appendix B.
We will often use the weaker bound log |S|

2 logN instead, which holds for N ≥ 2. This will sometimes
lead to simpler formulas.

3 Non-Sculptability Theorems

In this section, we prove the non-sculptability direction of Theorem 2. The proof has two parts:
in Section 3.1, we prove a relationship between randomized and quantum query complexities for

5

“unbalanced” functions, and in Section 3.2, we use this to prove a sculpting lower bound in terms
of the H-index of certificate complexity.

3.1 Query Complexity for Unbalanced Functions

We wish to show a nearly-quadratic relationship between randomized and quantum query com-
plexities for functions f for which Bal(f) is small. Note that this is a generalization of the relation
RCf (x) = O(Qf (x)2) from [Aar06]. That is, [Aar06] showed that for the task of distinguishing one
input from a (possibly large) set of alternatives, randomized and quantum algorithms are quadrat-
ically related. We want a similar relationship for the task of distinguishing a small set of inputs
from a (possibly large) set of alternatives.

We start with the following lemma.

Lemma 9. Let f : {0, 1}N → {0, 1} be a partial function. For a /∈ f−1(0), let fa,0 be the problem
of distinguishing a from f−1(0). That is, fa,0 is the function fa,0 : {a} ∪ f−1(0) → {0, 1} with
f(x) = 1 iff x = a. For a /∈ f−1(1), define fa,1 analogously. Then for all a ∈ {0, 1}N , we have
either R(fa,0) = O(Q(f)2) or R(fa,1) = O(Q(f)2).

Note that this holds even when a is not in the promise of f . The constant in the big-O notation
is a universal constant independent of a, f , and N .

Proof. Let Q be the quantum algorithm that achieves Q(f) quantum query complexity in de-
termining the value of f on a given input. When run on any a ∈ f−1(0), Q will output 0 with
probability at least 2/3, and when run on a ∈ f−1(1), it will output 1 with probability at least 2/3.

Consider running Q on an input a /∈ Dom(f). Then Q will output 0 with some probability p
and output 1 with probability 1− p. If p ≥ 1/2, then Q distinguishes a from f−1(1) with constant
probability. If p ≤ 1/2, then Q distinguishes a from f−1(0) with constant probability. Thus for
all a ∈ {0, 1}N , we have either Q(fa,0) = O(Q(f)) or Q(fa,1) = O(Q(f)). From [Aar06], we
have RC(g) = O(QC(g)2) = O(Q(g)2) for all functions g, so we conclude that either RC(fa,0) =
O(Q(f)2) or RC(fa,1) = O(Q(f)2).

Finally, note that for a problem of distinguishing one input from the rest, randomized query
complexity equals randomized certificate complexity. Thus we get that for all a ∈ {0, 1}N , either
R(fa,0) = O(Q(f)2) and or R(fa,1) = O(Q(f)2).

We’re now ready to prove the desired relationship between R and Q.

Theorem 10. Let f : {0, 1}N → {0, 1} be a partial function. Then

R(f) = O(Q(f)2 Bal(f)).

Proof. Without loss of generality, assume |f−1(0)| ≤ |f−1(1)|. We use Lemma 9 to construct a
randomized algorithm for determining f(x) given oracle access to x, assuming that f−1(0) is small.
The idea is to keep track of the subset Z ⊆ f−1(0) of strings that the input x might feasibly be
(consistent with the queries seen so far). We then construct a string a from a majority vote of the
elements of Z; that is, for each index i ∈ [n], ai will be the majority of yi over all y ∈ Z (with ties
broken arbitrarily).

This string a need not be in Dom(f). The important property of it is that if we query an index
i of the input x and discover that xi 6= ai, we can eliminate at least half of the strings from Z, since
they are no longer feasible possibilities for x.

We then get the following randomized algorithm for evaluating f(x):

6

• Initialize Z = f−1(0).

• While Z 6= ∅:

1. Calculate a from the entry-wise majority vote of Z.

2. Determine b ∈ {0, 1} such that R(fa,b) = O(Q(f)2) (this exists by Lemma 9).

3. Run the randomized algorithm evaluating fa,b on x with some amplification
(to be specified later).

4. If its output is 1 (i.e. the algorithm thinks x = a rather than x ∈ f−1(b)),
output 1− b and halt.

5. If its output is 0, a bit i was queried to reveal xi 6= ai, so update Z
(removing at least half its elements).

• If Z = ∅, output 1.

We note a few things about this algorithm. First, in step 3, notice that x need not be in the
domain of fa,b. However, we may still run the randomized algorithm that evaluates fa,b, and use
the fact that if x does happen to be in the domain (in particular, if x ∈ f−1(b)), then the algorithm
will work correctly. This is exactly what we use in step 4: if the algorithm that distinguishes a
from f−1(b) says that x is equal to a, it need not mean that x is in fact equal to a, but it does
mean that x /∈ f−1(b).

Secondly, step 5 assumes that the randomized algorithm for evaluating fa,b will only conclude
that an input x is not equal to a if it finds a disagreement with a. This is a safe assumption, as
argued in Lemma 5 of [Aar06].

Finally, we determine the number of queries this algorithm uses. The outer loop happens at
most blog |f−1(0)|c+ 1 ≤ Bal(f) times. Step 3 in the loop is the only one which queries the input
string. Since the loop repeats at most Bal(f) times, we can safely amplify the algorithm in step 3
O(log Bal(f)) times. This gives a query complexity of O(Q(f)2 log Bal(f)) for step 3, so the overall
number of queries is O(Q(f)2 Bal(f) log Bal(f)).

We can get rid of the log factor by being more careful with the amplification. Note that if we
ever find a disagreement with a when running the algorithm, we may immediately stop amplifying
and proceed to step 5. We keep a count c0 of how many times we had to amplify in step 3 for
functions of the form fa,0, and a count c1 for functions of the form fa,1.

If c0 ever reaches 2 Bal(f), we output 1 and halt. Similarly, if c1 ever reaches 2 Bal(f), we
output 0 and halt. This ensures the total amplification is O(Bal(f)), so the total query complexity
of the algorithm is O(Q(f)2 Bal(f)).

Note that if f(x) = 0 and the output of the algorithm was 1, it means that we ran the algorithm
evaluating fa,0 (for varying values of a) 2 Bal(f) times, and at most Bal(f) of those times the
algorithm said that x ∈ f−1(0). For each individual run, the probability is at least 2/3 that
the algorithm would say that x ∈ f−1(0). An application of the Chernoff bound shows that the
probability of this happening is exponentially small. Similarly, the probability of the algorithm
giving 0 when in actuality f(x) = 1 is also exponentially small.

We conclude that R(f) = O(Q(f)2 Bal(f)), as desired.

7

3.2 Application to Non-Sculptability

Theorem 10 immediately gives the following non-sculptability result, which says that unbalanced
functions cannot be sculpted.

Corollary 11. Let f : {0, 1}N → {0, 1} be a total function. For any promise P ⊆ {0, 1}N , we have

R(f |P) = O(Q(f |P)2 Bal(f)).

Proof. Note that Bal(f |P) ≤ Bal(f) for any f and P . Then, by Theorem 10, we have

R(f |P) = O(Q(f |P)2 Bal(f |P)) = O(Q(f |P)2 Bal(f)).

We extend this result by showing that any function with a small number of large certificates also
cannot be sculpted. This gives us a non-sculptability result in terms of the H-index of certificate
complexity.

Theorem 12. Let f : {0, 1}N → {0, 1} be a total function. For any promise P ⊆ {0, 1}N , we have

R(f |P) = O(Q(f |P)2 H(C2
f)).

Proof. We design a deterministic algorithm that reduces the set of possibilities for the input to
an unbalanced set. Specifically, the algorithm will reduce the possibilities for the input to a set
S ⊆ {0, 1}N such that Bal(f |S) ≤ H(C2

f) + 1. We then use Theorem 10 to get the desired non-
sculptability result.

Note that every 1-certificate of f must conflict with every 0-certificate of f in at least one
bit. Therefore, by querying all non-∗ entries of a 0-certificate, we reveal at least one entry of each
1-certificate.

We design a deterministic algorithm for computing f on an input from P . The algorithm

proceeds as follows: it repeatedly picks a 0-certificate p for f of size at most
√

H(C2
f) that is

consistent with all the entries of the input that were revealed so far. It then queries all the non-∗
entries of p. This is repeated

√
H(C2

f) times, or until there are no 0-certificates of size at most√
H(C2

f) (whichever happens first). Finally, the algorithm returns the set S of strings that are

consistent with the revealed entries of the input.
This algorithm uses at most H(C2

f) queries. We check its correctness by examining the set S.
Clearly, the input is in S. Furthermore, if any certificate of f was revealed, then f is constant on
S, so S contains either no 0-inputs or no 1-inputs.

There are at most 2H(C2
f) inputs with certificate complexity larger than

√
H(C2

f).

If the algorithm terminated because there were no consistent 0-certificates, then the only 0-

inputs in S have certificates of size larger than
√

H(C2
f). There are at most 2H(C2

f) of them, so S

has at most 2H(C2
f) 0-inputs to f . Conversely, if the algorithm went through

√
H(C2

f) iterations of

querying consistent 0-certificates, then it must have revealed
√

H(C2
f) entries of each 1-certificate

to f . If no 1-certificate was discovered, it means the revealed entries contradicted all 1-certificates

8

of size at most
√

H(C2
f). Thus the only 1-inputs in S have certificate size greater than

√
H(C2

f),

from which it follows that there are less than 2H(C2
f) of them.

We conclude that S contains either at most 2H(C2
f) 0-inputs to f or at most 2H(C2

f) 1-inputs to
f . This gives Bal(f |S) ≤ H(C2

f) + 1.
We design a randomized algorithm for f |P as follows. First, we run the above deterministic

algorithm to reduce the problem of computing f |P to the problem of computing f |S∩P . This costs
H(C2

f) queries. By Theorem 10, there is a randomized algorithm that uses

O(Q(f |S∩P)2 Bal(f |S∩P)) = O(Q(f |P)2 Bal(f |S)) = O(Q(f |P)2 H(C2
f))

queries to compute f |S∩P . Running this algorithm allows us to compute f |P . The total number of
queries used was

O(Q(f |P)2 H(C2
f) + H(C2

f)) = O(Q(f |P)2 H(C2
f)).

Note that Theorem 12 completes the first part of the proof of Theorem 2, since H(C2
f) ≤ H(Cf)2.

It is natural to wonder whether Theorem 12 is always at least as strong as Corollary 11. In
Theorem 22, we will show that it is, up to a quadratic factor and a logN factor.

4 Sculpting from Communication Complexity

In this section, we show that if a function f has many inputs with large randomized certificate
complexity then it can be sculpted: there is a promise P so that f |P exhibits a large quantum
speedup. This means that if H(RCf) is large, the function f can be sculpted. In Section 5, we will
relate H(RCf) to H(Cf), thereby completing the proof of Theorem 2.

Our sculptability proof will rely on the solution to a problem we call the “extended queries
problem,” which might be of independent interest. The solution to this problem will in turn use
results from communication complexity.

4.1 The Extended Queries Problem

We usually let an algorithm for computing a (possibly partial) function f : {0, 1}N → {0, 1} query
the bits of the input x. But what happens if we let the algorithm make other types of queries? For
example, if x is a Boolean string, we can let the algorithm query the parity of x. How does this
extra power affect the query complexity of f? In particular, is there some special set of additional
queries such that if a randomized algorithm is allowed to make the special queries, it can simulate
any quantum algorithm? If so, how many special queries suffice for this property to hold?

To formalize this question, we need a few definitions.

Definition 13. An extension function with extension G is an injective total function φ : {0, 1}N →
{0, 1}G (in particular, we need G ≥ N).

An extension function specifies, for each input x ∈ {0, 1}N , the types of queries an algorithm
is allowed to make on x. In other words, we will let algorithms query from φ(x) instead of from x.
Note that the extension function may provide easy access to information about x that is hard to
obtain otherwise (such as its parity).

9

Definition 14. Let f : {0, 1}N → {0, 1} be a partial function, and let φ be an extension function.
The extended version of f with respect to φ is the partial function fφ : φ(Dom(f))→ {0, 1} defined
by fφ(x) = f(φ−1(x)).

Note that fφ is a partial function from {0, 1}G to {0, 1}. We can consider D(fφ), R(fφ), Q(fφ),
and so on. To pose the extended queries problem, we will need a notion of the complexity of a set
of functions, defined as the maximum complexity of any function in that set.

Definition 15. For any set of functions S, we define D(S) := maxf∈S D(f). We define R(S),
Q(S), etc. similarly. Further, we define DG(S), the extended query complexity of S with extension
G, to be the minimum, over all extension functions φ with extension G, of maxf∈S D(fφ). We
define RG(S), QG(S), etc. similarly.

In other words, for any set of functions, the extended query complexity of the set with G
extension is the number of queries required to compute all functions in the set given the best
possible extension. We observe that if G ≥ |S|, the extended query complexity DG(S) is 1, since
the extension φ(x) for a given input x could simply specify the values of all the functions in S on x.
We also observe that for all G ≥ N , we have DG(S) ≤ D(S), since the identity function is always a
valid extension function. Moreover, the extended query complexity of a set is decreasing in G. We
now ask the following question.

The Extended Queries Problem. Is there a set of functions S for which Q(S) is small but
RG(S) is large, even when the extension G is exponentially large in the input size N? We can also
ask this question for other complexity measures, such as R(S) vs. RG

0 (S) or R0(S) vs. DG(S).
It turns out that a negative solution to the extended queries problem implies a sculptability

result in terms of H(RCf), as the following theorem shows.

Theorem 16. Let f : {0, 1}N → {0, 1} be a total function. Let A =
H(RCf)
4 logN , and let S be any set

of partial functions from {0, 1}A to {0, 1}. Then there is a promise P ⊆ {0, 1}N such that

Q(f |P) = O(Q(S)), R(f |P) = Ω(RN (S)).

Analogous statements hold for other pairs of complexity measures, such as D and R0 or R0 and R.

We delay the proof of Theorem 16 to Section 4.3. First, we settle the extended queries problem
for R vs. Q: Theorem 18 will provide an exponential lower bound on G by reducing the extended
queries problem to a problem in communication complexity.

4.2 Reducing Extension to Communication Complexity

For a partial function f : {0, 1}N1 ×{0, 1}N2 → {0, 1}, we will denote the communication complex-
ities of f by DCC(f), RCC(f), QCC(f), and RCC

0 (f). We will use the following definition.

Definition 17. Let f : {0, 1}N1×{0, 1}N2 → {0, 1} be a partial function. For any x ∈ Dom(f), we
write x = xAxB, with xA ∈ {0, 1}N1 and xB ∈ {0, 1}N2. Let DomA(f) = {xA : x ∈ Dom(f)} and
DomB(f) = {xB : x ∈ Dom(f)}. For any a ∈ DomA(f), we define the marginal of f with respect
to a to be the partial function fa : {0, 1}N2 → {0, 1} defined by fa(b) := f(a, b) for all b ∈ {0, 1}N2

such that (a, b) ∈ Dom(f). We define Mar(f) = {fa : a ∈ DomA(f)} to be the set of all marginal
functions for f .

10

We now connect communication complexity to the extended queries problem.

Theorem 18. Let f : {0, 1}N1 × {0, 1}N2 → {0, 1} be a partial function. Then

RG(Mar(f)) = Ω

(
RCC(f)

logG

)
.

Similarly, we also have DG(Mar(f)) = Ω(DCC(f)/ logG), RG
0 (Mar(f)) = Ω(RCC

0 (f)/ logG), and
QG(Mar(f)) = Ω(QCC(f)/ logG).

Proof. We prove the theorem for R. The statements for D, R0, and Q will follow analogously.
Let φ : {0, 1}N2 → {0, 1}G be the best possible extension function, so that RG(Mar(f)) =
maxg∈Mar(f) R(gφ).

We now describe a randomized communication protocol for computing f . Alice receives a string
a, and must compute f(a, b), where b is Bob’s string. This is equivalent to computing fa(b). Since

Alice knows fa, she also knows fφa . Let R a randomized algorithm that computes fφa using at most
RG(Mar(f)) queries. Alice will run this algorithm, and for each query, she will send the index of
that query to Bob (as a number between 1 and G). Bob will reply with the corresponding bit of
φ(y) (as a bit in {0,1}). This allows Alice to compute fa(b) = f(a, b).

The total communication in this protocol is at most (dlogGe + 1) RG(Mar(f)). Since this
upper-bounds the randomized communication complexity of f (using private coins), the desired
result follows.

Theorem 18 allows us to use communication complexity as a tool for lower-bounding the ex-
tended query complexity of certain sets of functions. To use it to solve the extended queries
problem, we need a function f that has large randomized communication complexity but for which
Q(Mar(f)) is small. To construct such a function, we start from a simple function that was re-
cently shown to separate randomized from quantum communication complexity, called the Vector
in Subspace problem.

The Vector in Subspace Problem. In this problem, Bob gets a unit vector v ∈ Rn, and
Alice gets a subspace H of Rn of dimension n/2. It is promised that either v ∈ H or v ∈ H⊥; the
task is to determine which is the case. We assume for simplicity that n is a power of 2.

This problem was first studied in [Kre95] and was also described in [Raz99]. Klartag and Regev
[KR11] showed that this problem has randomized communication complexity Ω(n1/3). In addition,
it is easy to see that the one-way quantum communication complexity of the problem is at most
log n: Bob can send a superposition over log n bits with amplitudes determined by v; Alice can
then apply the projective measurement given by (H,H⊥).

To apply this function to the extended queries problem, we need a few modifications. First, we
need a discrete version of the problem. [KR11] showed that a lower bound of Ω(n1/3) for randomized
communication complexity applies to a discrete version of the problem in which each real number
is described using O(log n) bits; that is, Alice’s subspace is given using n/2 vectors of length n,
whose entries are specified using O(log n) bits, and Bob’s vector is specified using n real numbers
of O(log n) bits each.

Mar(f) is the set of functions where we know Alice’s subspace H, and are allowed to query from
Bob’s input vector. However, phrased this way, it is not clear how to use a quantum algorithm to
compute such functions using few queries. To solve this problem, we modify the way Bob’s input

11

is specified. Instead of specifying only the entries to the vector, Bob’s input string also lists some
“partial sums” of the vector entries.

The idea is for Bob’s vector to allow Alice to use the following algorithm to construct the state
with amplitudes specified by v. We interpret v as specifying a superposition over strings of length
log n. Alice starts by querying the probability p that the first bit of this string is 0 when this state
is measured. Alice will now place a

√
p amplitude on querying the probability that the second bit

is 0 conditioned on the first bit being 0, and a 1−√p amplitude on querying the probability that
the second bit is 0 conditioned on the first bit being 1. Alice keeps going in this way, until she gets
to the final bit of the string of length log n, at which point she queries the phase. This allows her
to construct the state determined by the amplitudes in v.

Of course, for this to work, Bob’s input must provide all of these conditional probabilities.
There is one such probability to specify for the first bit, two for the second, four for the third, and
so on. Since there are log n bits, Bob’s input needs to specify only O(n) probabilities. Each can be
specified with O(log n) precision, so Bob’s total input size is O(n log n). Moreover, Alice constructs
the desired state after O(log n) queries to the probabilities, or O(log2 n) queries to the bits of Bob’s
input.

We thus get the following theorem.

Theorem 19. For all A ∈ N, there is a set S of partial functions from {0, 1}A to {0, 1} such that
for all G ≥ A,

Q(S) = O(log2A), RG(S) = Ω

(
A1/3

log1/3A · logG

)
.

Proof. Let f be the function described above with n = A/ logA, and let S = Mar(f). Then
Q(S) = O(log2 n) = O(log2A) and RCC(f) = Ω(n1/3) = Ω(A1/3/ log1/3A). By Theorem 18, we
get RG(S) = Ω(A1/3/(log1/3A · logG)).

Together with Theorem 16, this implies that any function with large H(RCf) can be sculpted,
simply by plugging S from Theorem 19 into Theorem 16 and setting G = N .

4.3 Reducing Sculpting to Extended Query Complexity

We now prove Theorem 16, restated here for convenience.

Theorem 16. Let f : {0, 1}N → {0, 1} be a total function. Let A =
H(RCf)
4 logN , and let S be any set

of partial functions from {0, 1}A to {0, 1}. Then there is a promise P ⊆ {0, 1}N such that

Q(f |P) = O(Q(S)), R(f |P) = Ω(RN (S)).

Analogous statements hold for other pairs of complexity measures, such as D and R0 or R0 and R.

Proof. There are at least 2H(RCf ·2 logN) inputs x with RCf (x) ≥ H(RCf ·2 logN)/(2 logN). Let
the set of such inputs be C. By Lemma 8, if N ≥ 2, there is a set B of

H(RCf ·2 logN)

2 logN
≥

H(RCf)

2 logN

indices in {1, 2, . . . , N} that is shattered by the inputs in C. We’ll restrict B to have size at most
H(RCf)/(4 logN), so |B| = A. Let φ : {0, 1}A → {0, 1}N be defined by mapping each string

12

x ∈ {0, 1}A to a string z in C such that restricting z to A gives x. This is an injective mapping, so
φ is an extension function with extension size N .

Next, consider the set S of partial Boolean functions from {0, 1}A to {0, 1}. Let Sφ = {gφ : g ∈
S}. Then R(Sφ) ≥ RN (S). It follows that there is some function gφ ∈ Sφ such that R(gφ) ≥ RN (S).

We will use the function gφ to define the desired promise P . The domain of gφ is contained
in C. Let x be in this domain, so that RCf (x) ≥ H(RCf ·2 logN)/(2 logN) ≥ 2A. Let µx
be a distribution over inputs y such that f(x) 6= f(y), with the property that for any bit i,
Pr[yi 6= xi] ≤ 1/RCf (x) ≤ 1/(2A). Then for all x ∈ C, a randomized algorithm has a hard time
distinguishing between x and µx. For each such x, let µ′x be the distribution µx conditioned on
the sampled input agreeing with x on the bits in B. Since the probability of an input sampled
from µx disagreeing with x on B is at most |B| · 1/(2A) ≤ 1/2, the distribution µ′x is not too far
from µx. In particular, any randomized algorithm that finds a disagreement with x on an input
sampled from µ′x with probability p will also find a disagreement with x on an input sampled from
µx with probability at least p/2. It follows that a randomized algorithm must use Ω(A) queries to
distinguish x from µ′x.

We construct the promise P as follows. Start with P = ∅. For each x ∈ Dom(gφ), we add x to
P if f(x) = gφ(x); otherwise, we add the support of µ′x to P .

It remains to lower-bound R(f |P) and to upper-bound Q(f |P). We start with the upper bound.
Let y ∈ P , and consider the value of y on B. If x is an input of the domain of gφ that caused y to
be added, then x and y agree on B. Further, the values of x on B are simply φ−1(x) ∈ {0, 1}|B|,
and g(φ−1(x)) = gφ(x) = f(y). This means g(y|B) = f(y). We now have the quantum algorithm
work only with the bits of y|B, ignoring the rest. The algorithm need only compute g(y|B). Since
g ∈ S, we get Q(f |P) ≤ Q(g) ≤ Q(S), as desired. A similar argument would upper-bound other
complexity measures, such as R, R0, or D.

For the lower bound, consider the hard distribution µ on inputs to gφ obtained from Yao’s
minimax principle [Yao77]. This distribution has the property that any randomized algorithm for
gφ that succeeds with probability at least 2/3 on inputs sampled from µ must use R(gφ) queries.
We construct a new distribution µ′ over P by generating an element x ∈ Dom(gφ) according to
µ, and then outputting either x or a sample from µ′x, depending on which of them was added to
P . We lower-bound the number of queries a randomized algorithm requires to compute f on an
input sampled from µ′ by a reduction from either computing gφ on inputs sampled from µ, or else
distinguishing x from µ′x.

Let R be a randomized algorithm for f |P . Let x ∼ µ. We wish to compute gφ(x). Although
x may not be in P , consider running R on x anyway. The algorithm will correctly output gφ(x)
with some probability p, depending on both the internal randomness of R and on µ. If p ≥ 3/5, we
could amplify R a constant number of times to turn it into an algorithm for g that works on inputs
sampled from the hard distribution µ, which means R must use Ω(R(gφ)) = Ω(RN (S)) queries. So
suppose that p ≤ 3/5.

Next, given x ∼ µ, we let yx be either x or a sample from µ′x, as µ′ dictates. Then running R
on yx gives f(yx) = gφ(x) with probability at least 2/3. On the other hand, running R on x gives
output gφ(x) with probability at most 3/5. That is, we have

Pr
R,x∼µ

[R(x) = gφ(x)] = E
x∼µ

[
Pr
R

[R(x) = gφ(x)]

]
≤ 3/5

Pr
R,x∼µ,yx

[R(yx) = gφ(x)] = E
x∼µ

[
Pr
R,yx

[R(yx) = gφ(x)]

]
≥ 2/3

13

From which it follows that

E
x∼µ

[
Pr
R,yx

[R(yx) = gφ(x)]− Pr
R

[R(x) = gφ(x)]

]
≥ 1/15.

This means there must be some specific input x̂ such that the probability of R outputting gφ(x̂)
when run on yx̂ is at least 1/15 more than the probability of R outputting gφ(x̂) when run on x̂.
In particular, we must have yx̂ 6= x̂, so yx̂ is a sample from µ′x̂. Therefore, R distinguishes x̂ from
µ′x̂ with constant probability, so it uses at least Ω(A) queries.

We conclude that R(f |P) = Ω(min{RN (S), A}). Since the domain of the functions in S is
{0, 1}A, their query complexity is at most A. Thus R(f |P) = Ω(RN (S)), as desired. A similar
argument lower-bounds other complexity measures, such as R0 or D.

This proof uses the fact that RC lower-bounds R, so it would not work on complexity measures
that are not lower-bounded by RC (for example, C(1)). For Q, it might be possible to use a similar
argument and suffer a quadratic loss, since Q is lower-bounded by

√
RC. However, since there is

no hard distribution for a quantum query complexity problem, this might be trickier to prove (we
will not need it in this paper).

We can use the previous theorems to get a sculptability result for R vs. Q in terms of the
H-index of randomized certificate complexity.

Corollary 20. Let f : {0, 1}N → {0, 1} be a total function. Then there is a promise P ⊆ {0, 1}N
such that

Q(f |P) = O(log2 H(RCf)), R(f |P) = Ω

(
H(RCf)1/3

log5/3N

)
.

There is also a promise P ′ ⊆ {0, 1}N such that

R0(f |P ′) = O(1), D(f |P ′) = Ω

(
H(RCf)

log2N

)
.

Proof. This follows from Theorem 16 together with Theorem 19 and Theorem 26.

To complete the proof of Theorem 2, all that remains is relating H(RCf) to H(Cf).

5 Relating H(Cf), H(RCf), and H(bsf)

In this section, we relate H(Cf) to H(RCf), completing the characterization of sculpting. Actually,
we will prove a relationship between H(Cf) and H(bsf), which implies the desired relationship
since H(bsf) ≤ H(RCf). The proof is somewhat involved, but splits naturally into three parts. In
Lemma 21, we show a relationship between Cf (x) and RCf (x) in terms of the number of 0- and
1-inputs of f . In Theorem 22, we show that H(Cf) = O(Bal(f) logN). Finally, Theorem 23 gives
the desired relationship between H(Cf) and H(bsf).

Lemma 21. Let f : {0, 1}N → {0, 1} be a partial function, and let x ∈ Dom(f). If f(x) = 0, then

Cf (x) ≤ RCf (x)(1 + log |f−1(1)|)

and if f(x) = 1, then
Cf (x) ≤ RCf (x)(1 + log |f−1(0)|).

14

Proof. For x ∈ f−1(1), we wish to upper-bound Cf (x) in terms of RCf (x), assuming f−1(0) is
small. A certificate for x consists of a partial assignment of x that contradicts all the elements of
f−1(0).

Consider the greedy strategy for certifying x, which works by repeatedly choosing the bit of x
that contradicts as many of the 0-inputs as possible, and adding it to the certificate. By definition,
this strategy produces a certificate for x of size at least Cf (x).

Let pi be the fraction of the remaining inputs which are contradicted by the i-th bit of the
greedy algorithm. The number of remaining inputs during the run of the greedy algorithm is then

|f−1(0)|, |f−1(0)|(1− p1), |f−1(0)|(1− p1)(1− p2), . . .

The number of remaining inputs in the greedy algorithm will be upper-bounded by a geometric
sequence that starts at |f−1(0)| and has ratio 1−mini pi. Such a sequence decreases to 1 after at
most

−1

log(1−mini pi))
(1 + log |f−1(0)|) ≤ 1 + log |f−1(0)|

mini pi

steps. It follows that

Cf (x) ≤ 1 + log |f−1(0)|
mini pi

.

It remains to show that RCf (x) = Ω(1/mini pi). Let j be the step of the greedy algorithm
that achieves this minimum, i.e. pj = mini pi. Then before the jth step of the algorithm, there is
a non-empty set S of 0-inputs for f such that for any bit of the input, at most a pj fraction of the
elements of S disagree with x on that bit. In other words, x is entry-wise very close to the “average”
of the elements of S. If we give each element of S weight 1/(pj |S|), we would get a feasible set of
fractional blocks with total weight 1/pj . Thus RCf (x) ≥ 1/pj , so Cf (x) ≤ RCf (x)(log |f−1(0)|+1).
An analogous argument works when x is a 0-input to f .

Theorem 22. Let N ≥ 2, and let f : {0, 1}N → {0, 1} be a total function. Then

H(Cf) ≤ 10 Bal(f) logN.

Proof. Without loss of generality, suppose |f−1(0)| ≤ |f−1(1)|. The number of 0-inputs with large
certificates is at most |f−1(0)| ≤ 2Bal(f). Let S be the set of 1-inputs with certificates of size greater
than 5 Bal(f). We wish to show that S is small. Lemma 8 implies there is a set B = {i1, i2, . . . , i|B|}
of indices of the input of size at least log |S|/(2 logN) that is shattered by S. Therefore, to show
that S is small, it suffices to show that B is small.

From Lemma 21, we have Cf (x) ≤ RCf (x) Bal(f) for any 1-input x, so for all x ∈ S, we have
RCf (x) ≥ Cf (x)/Bal(f) > 5. This means for all x ∈ S, there is a distribution µx over 0-inputs
such that for each i, the probability that yi 6= xi when y is sampled from µx is less than 1/5.

Let µB be the uniform distribution over B. Let δ(b, c) = 1 if b 6= c and 0 otherwise. We then
write

1

5
> E

i∼µB

(
E

y∼µx
δ(xi, yi)

)
= E

y∼µx

(
E

i∼µB
δ(xi, yi)

)
.

We can conclude that for any x ∈ S, there exists a 0-input yx that differs from x in less than one
fifth of the bits of B. In other words, the distance between x|B and yx|B is less than |B|/5. The
idea is now to upper-bound |B| by using the fact that for every string in {0, 1}|B| there is a 0 input

15

y such that y|B is close to that string, and there are few 0-inputs overall. Indeed, the number of
strings in {0, 1}|B| is 2|B|, and each 0-input can only be of distance less than |B|/5 from 2H(1/5)|B|

of them (where H(1/5) denotes the entropy of 1/5). Therefore, to cover all the strings in {0, 1}|B|,
there must be more than 2(1−H(1/5))|B| 0-inputs. Then

Bal(f) ≥ log |f−1(0)| > (1−H(1/5))|B| ≥ (1−H(1/5))
log |S|
2 logN

,

so

log |S| < 2 Bal(f) logN

1−H(1/5)
≤ 8 Bal(f) logN.

This means there are less than 28 Bal(f) logN 1-inputs with certificate size at least 5 Bal(f). There
are also at most 2Bal(f) 0-inputs with certificate size at least 5 Bal(f) (because there are at most
that many 0-inputs in total). Thus the log of the total number of inputs with certificates larger
than 5 Bal(f) is at most 10 Bal(f) logN . It follows that H(Cf) ≤ 10 Bal(f) logN .

Theorem 23. Let f : {0, 1}N → {0, 1} be a total function. Then

H(Cf) = O(H(bsf)2 logN).

Proof. Let A be the set of inputs that have certificate size more than H(Cf). Let A0 be the set of
0-inputs in A, and let A1 be the set of 1-inputs in A. Let B be the set of inputs that have block
sensitivity more than b, with b =

√
H(Cf)/2. Let B0 be the set of 0-inputs in B, and let B1 be the

set of 1-inputs in B. Without loss of generality, assume |A0| ≥ |A1|. Since |A| ≥ 2H(Cf), we have
|A0| ≥ 2H(Cf)−1.

Now, let g : {0, 1}N → {0, 1} be the total function defined by g(x) = 1 if and only if x ∈ B1.
Suppose x is an element of A0\B0. Consider certifying that x is a 0-input for g; let p be the smallest
such certificate. Then p is consistent with x but inconsistent with all the strings in B1. We claim
that this certificate must be large: its size must be greater than H(Cf) − b2 = H(Cf)/2. To show
this, we show that we can turn p into a certificate for x with respect to f (instead of with respect
to g) by adding only b2 bits to it.

Let q be a minimal sensitive block of x (with respect to f) that is disjoint from p. Since x is a
0-input for f , xq is a 1-input for f . Since q is disjoint from p, xq is consistent with p, so xq /∈ B1.
Thus the block sensitivity of xq is at most b. However, since q was a minimal sensitive block, the
sensitivity of xq is at least |q|; thus |q| ≤ b. It follows that all minimal sensitive blocks of x that
are disjoint from p must have size at most b.

In addition, since x ∈ A0\B0, the block sensitivity of x is at most b. We can now construct a
certificate for x by taking a maximal set of minimal disjoint sensitive blocks for x, all of which are
disjoint from p. There will be at most b such blocks, and each will have size at most b. Therefore,
this certificate for x has size at most |p| + b2. Since x ∈ A0, we must have |p| + b2 > H(Cf), or
|p| > H(Cf) − b2 = H(Cf)/2. We have shown that the elements of A0\B0 all have certificate size
greater than H(Cf)/2 even with respect to g.

Now, by Theorem 22, the number of inputs x that have certificate size more than 10(1 +
log |B1|) logN with respect to g is at most 210(1+log |B1|) logN . It follows that either H(Cf)/2 ≤
10(1 + log |B1|) logN (so that the theorem doesn’t apply), or else |A0\B0| ≤ 210(1+log |B1|) logN .

In the former case, we have

log |B| ≥ log |B1| ≥
H(Cf)

20 logN
− 1.

16

In the latter case, we have

2H(Cf)−1 ≤ |A0| ≤ |B0|+ 210(1+log |B1|) logN = |B0|+ (2|B1|)10 logN ≤ (2|B|)10 logN ,

so in that case,

log |B| ≥
H(Cf)− 1

10 logN
− 1.

Thus, in both cases,

log |B| ≥
H(Cf)− 1

20 logN
− 1 = Ω

(
H(Cf)

logN

)
.

This means there are 2Ω(H(Cf)/ logN) inputs with block sensitivity more than
√

H(Cf)/2. We
thus have

H(bsf) = Ω

(
min

{
H(Cf)

logN
,
√

H(Cf)

})
= Ω

√H(Cf)

logN

 .

Theorem 2 now follows from Theorem 10 (the non-sculptability theorem in terms of H(C2
f)),

Corollary 20 (the sculptability result in terms of H(RCf)), and Theorem 23 (relating H(bsf) to
H(Cf)), together with the properties that H(C2

f) ≤ H(Cf)2 and that H(bsf) ≤ H(RCf). We restate
Theorem 2 here for convenience.

Theorem 2. For all total functions f : {0, 1}N → {0, 1} and all promises P ⊆ {0, 1}N , we have

R(f |P) = O(Q(f |P)2 H(Cf)2).

Conversely, for all total functions f : {0, 1}N → {0, 1}, there is a promise P ⊆ {0, 1}N such that

R(f |P) = Ω

(
H(Cf)1/6

log13/6N

)
and Q(f |P) = O(log2 H(Cf)).

Theorem 1 follows as a corollary. This completes the proof of our main result.

6 Sculpting Randomized Speedups

Now that we’ve characterized sculpting quantum query complexity, we turn our attention to sculpt-
ing other measures. Recall that

Q(f) ≤ R(f) ≤ R0(f) ≤ D(f).

We showed that sculpting R(f) vs. Q(f) is possible if and only if f has a large number of large
certificates. We now show that the exact same condition characterizes sculpting D(f) vs. R0(f).
On the other hand, we show that R0(f) vs. R(f) behaves differently: it’s always possible to sculpt
a function f to a promise P such that R(f |P) is constant and R0(f |P) is almost as large as R0(f).

We start by characterizing sculpting for D vs. R0.

17

6.1 Sculpting D vs. R0

The proof of this characterization will follow that of Theorem 2. For the non-sculptability direc-
tion, we need an analogue of Theorem 10, relating deterministic and zero-error randomized query
complexities in terms of Bal(f). We prove the following theorem.

Theorem 24. Let f : {0, 1}N → {0, 1} be a partial function. Then

D(f) ≤ 2R0(f) Bal(f).

Proof. Consider the zero-error randomized algorithm that takes R0(f) expected queries to evaluate
f . By Markov’s inequality, if we let this algorithm make 2 R0(f) queries on input x, it will succeed
in computing f(x) (and provide a certificate for x) with probability at least 1/2. This gives us a
probability distribution µ over deterministic algorithms, each of which makes 2 R0(f) queries, such
that for each input x the probability that an algorithm sampled from µ finds a certificate when run
on x is at least 1/2.

For a deterministic algorithm D and an input x, let c(D,x) = 1 if D finds a certificate for x,
and c(D,x) = 0 otherwise. Let Z ⊆ {0, 1}N . Then

E
D∼µ

[∑
x∈Z

c(D,x)

]
=
∑
x∈Z

E
D∼µ

[c(D,x)] ≥
∑
x∈Z

(1/2) =
|Z|
2
.

It follows that there is a deterministic algorithm DZ that makes 2 R0(f) queries and finds a certifi-
cate when run on half the inputs in Z.

Suppose without loss of generality that |f−1(0)| ≤ |f−1(1)|. Now, on input x, set Z = f−1(0),
and run DZ on x. If it fails to find a certificate, then we have eliminated half of Z as possibilities
for the input. Repeating this blog |f−1(0)|c + 1 ≤ Bal(f) times suffices to eliminate all of f−1(0)
as possibilities for x, and hence to determine the value of f(x). The total number of queries used
is at most 2 R0(f) Bal(f).

Note that Theorem 24 and Theorem 10 together complete the proof of Theorem 4.
Next, we turn Theorem 24 into a non-sculptability theorem in terms of H(Cf). The argument

in Theorem 12 follows verbatim, and we get the following sculpting lower bound.

Corollary 25. Let f : {0, 1}N → {0, 1} be a total function. For any promise P ⊆ {0, 1}N , we have

D(f |P) = O(R0(f |P) H(Cf)2).

We now prove the other direction: we show that sculpting is possible when H(RCf) is large.
Using the arguments from Section 4, it suffices to solve the extended queries problem for D vs. R0.
We do this using the reduction to communication complexity in Theorem 18.

Theorem 26. For all N ∈ N, there is a set of partial functions S from {0, 1}N to {0, 1} such that
for all G ≥ N ,

R0(S) = O(1), DG(S) = Ω

(
N

logG

)
.

18

Proof. We start with Equality, in which Alice and Bob are each given an n-bit string and wish
to know if their strings are equal. This problem has deterministic query complexity Ω(n), but small
randomized query complexity. To make the zero-error randomized query complexity small as well,
we give Alice and Bob two strings each, with the promise that either their first strings are equal
and the second strings are not, or vice versa. The goal will be to determine which is the case. It is
not hard to see that the deterministic communication complexity of this problem is still Ω(n).

We need to get the zero-error randomized query complexity of the marginal functions to be
small. To do this, we introduce another modification: we encode each of Bob’s strings using a fixed
random code of length 3n. This code will have the property that the distance between any pair
of codewords is Ω(n). To compute a marginal function fa1,a2 indexed by Alice’s strings, we can
simply randomly sample from each of Bob’s strings; after O(1) samples, we will discover which of
his strings do not match the codeword corresponding to a1 and a2.

This construction gives us a function f : {0, 1}2n × {0, 1}6n → {0, 1} such that DCC(f) = Ω(n)
and R0(Mar(f)) = O(1). Setting N = 6n and using Theorem 18 finishes the proof.

Putting this together, we get the following sculpting theorem which, together with Corollary 25,
is analogous to Theorem 2.

Theorem 27. For all total functions f : {0, 1}N → {0, 1}, there is a promise P ⊆ {0, 1}N such
that

D(f |P) = Ω

(√
H(Cf)

log5/2N

)
and R0(f |P) = O(1).

Proof. This follows from Theorem 26 together with Theorem 16 and Theorem 23.

We also get the following corollary, analogous to Theorem 1.

Corollary 28. Let f : {0, 1}N → {0, 1} be a total function. Then there is a promise P ⊆ {0, 1}N
such that D(f |P) = NΩ(1) and R0(f |P) = No(1), if and only if H(Cf) = NΩ(1). Futhermore, in this
case we also have R0(f |P) = O(1).

6.2 Sculpting R0 vs. R

While it is possible to use the above argument to get a sculptability result for R0 vs. R, we can get
a stronger result by a direct argument. In fact, unlike R vs. Q or D vs. R0, sculpting R0 vs. R is
always possible (there is no dependence on any H-index).

Theorem 29. Let f : {0, 1}N → {0, 1} be a non-constant total function. Then there is a promise
P ⊆ {0, 1}N such that

R(f |P) = 1, R0(f |P) ≥ R0(f)1/3

6
.

Proof. We actually prove a stronger result, finding a promise P such that R(f |P) = 1 and
R0(f |P) ≥ bs(f)/6. We then use the known relationship R0(f) ≤ bs(f)3 for total functions to
get the desired result. Note that finding P with R(f |P) = 1 and R0(f |P) ≥ bs(f)/6 is trivial when
bs(f) ≤ 6; thus we assume bs(f) > 6.

Let x ∈ {0, 1}N be such that bsf (x) = bs(f). Assume without loss of generality that f(x) = 0.
Let S1 be the set of all 1-inputs with Hamming distance at least (2/3)N from x. For any partial

19

assignment p consistent with x, let Sp1 ⊆ S1 be the set of all inputs y in S1 that are consistent with
p.

There are two cases. If Sp1 is non-empty for all partial assignments p consistent with x of size
less than bsf (x)/6, then we can pick the promise to be P = {x}∪S1. It then follows that certifying
that f |P is 0 on input x takes at least bsf (x)/6 queries, whence R0(f |P) ≥ bsf (x)/6. On the
other hand, a randomized algorithm can make 1 query to check if the input differs from x. Thus
R(f |P) = 1.

The other case is that there is some partial assignment p of size less than bsf (x)/6 such that
Sp1 is empty. We restrict our attention to inputs consistent with p. Since x has bsf (x) disjoint
sensitive blocks, it has at least (5/6) bsf (x) disjoint sensitive blocks that do not overlap with p. We
exclude blocks of size larger than N/3. Since there are at most 2 such blocks, this leaves at least
(5/6) bsf (x) − 2. Let B be the set of inputs we get by flipping one of these blocks of x. Then B
contains only 1-inputs to f that are consistent with p, all of which have Hamming distance at most
N/3 from x. Since bsf (x) = bs(f) > 6, we have B 6= ∅.

Let S be the set of inputs consistent with p that have Hamming distance at least (2/3)N from
x. Since Sp1 is empty, S contains only 0-inputs to f . Let P = B ∪ S. Now, consider certifying
that an input y to f |P is a 1-input. Since all inputs of Hamming distance at least (2/3)N from
x that are consistent with p are 0-inputs, this requires showing at least N/3 − |p| bits of y. Since
|p| < bsf (x)/6 ≤ N/6, this is at least N/6. Thus R0(f |P) ≥ N/6 ≥ bs(f)/6.

On the other hand, a bounded-error randomized algorithm can simply query a bit of the input
at random, and check for agreement with x. If the bit agrees, the algorithm can output 1, and if
the bit disagrees, the algorithm can output 0. This works because 0-inputs have distance at least
(2/3)N from x, while all 1-inputs have distance at most N/3 from x (since the sensitive blocks used
to construct B were of size at most N/3). Thus R(f |P) = 1.

7 Other Query Complexity Results

We can use some of the tools introduced in the previous sections to prove some new relations
in query complexity. In Section 7.1, we prove a quadratic relationship between D(f) and Q(f)
for partial functions f that have small domain. In Section 7.2, we prove a quadratic relationship
between D(f) and Q(f) for total functions f for which H(Cf) is small.

7.1 Query Complexity on Small Promises

We prove Theorem 3, which we restate for convenience.

Theorem 3. Let f : {0, 1}N → {0, 1} be a partial function, and let Dom(f) denote the domain of
f . Then

Q(f) = Ω

(√
D(f)

log |Dom(f)|

)
.

Proof. We follow the proof of Theorem 10. The randomized algorithm used in that proof relies
only on the existence of a randomized algorithm distinguishing a string a ∈ {0, 1}N from either
f−1(0) or f−1(1), which is in turn guaranteed by Lemma 9. To make that algorithm deterministic,
we only need to turn this distinguishing algorithm into a deterministic one. By Lemma 21, we
have Cf (x) = O(RCf (x) log |Dom(f)|). On the task of distinguishing a single input from a set

20

of inputs, certificate complexity equals deterministic query complexity. Using this observation, we
can modify the proof of Theorem 10 to get the result

D(f) = O(Q(f)2 Bal(f) log |Dom(f)|) = O(Q(f)2 log2 |Dom(f)|),

from which the desired result follows.

7.2 Relationship for Total Functions

We can use H-indices to improve some of the relationships between complexity measures on total
functions, proving Theorem 5. Recall that for total functions, we have D(f) ≤ C(f) bs(f) and
bs(f) = O(Q(f)2), from which we have D(f) = O(Q(f)2 C(f)). We strengthen this result to
D(f) = O(Q(f)2 H(

√
Cf)2) for total Boolean functions. Since H(

√
Cf) ≤

√
C(f), this result is

always stronger. In addition, since C(OR) = n and H(COR) = 1, this improvement is sometimes
very strong.

We restate Theorem 5 for convenience.

Theorem 5. Let f : {0, 1}N → {0, 1} be a total function. Then

D(f) = O(Q(f)2 H(
√

Cf)2).

Proof. The proof follows the proof that D(f) ≤ C(f) bs(f) [BBC+01]. We start by reviewing this
proof. The deterministic algorithm repeatedly picks possible 0-certificates that are consistent with
the input observed so far, and queries the entries of these certificates. If the queried entries match
the 0-certificate, the algorithm is done (the value of f(x) is known to be 0). If ever there are no
additional 0-certificates consistent with the observed part of the input, the value of the function is
known to be 1.

The key insight is that if this process repeats k times, then the block sensitivity of the function
is at least k. Indeed, let p be the partial assignment revealed after k iterations. Pick a 1-input
y for f that is consistent with p. Let Bi be the set of entries queried in the i-th iteration of the
algorithm. Then for each i, there is a way to change only the variables in Bi to form a 0-certificate
for f . It follows that each Bi contains a sensitive block for y. Since the Bi sets are disjoint, we get
bsf (y) ≥ k, so bs(f) ≥ k.

We modify the algorithm as follows. In each step, we only allow the algorithm to pick 0-
certificates that are of size at most H(

√
Cf)2. Thus the algorithm uses at most bs(f) H(

√
Cf)2

queries before it gets stuck. When it gets stuck, either the value of f on the input is determined,
or else there are no more 0-certificates that are small enough.

Next, we repeat the same process with 1-certificates instead of 0-certificates. If the value of f is
not yet determined, it means that the input is not consistent with any small enough certificates, so
the certificate complexity of the input x is greater than H(

√
Cf)2. This gives

√
Cf (x) > H(

√
Cf).

By definition of the H-index, there are now at most 2H(
√

Cf) possibilities for the input. We’ve
therefore restricted f to a small domain P . We now use Theorem 3 to evaluate f using

O(Q(f)2 log2 |Dom(f |P)|) = O(Q(f)2 H(
√

Cf)2)

deterministic queries. This is added to the bs(f) H(
√

Cf)2 queries from before. Using bs(f) =
O(Q(f)2), we get

D(f) = O(Q(f)2 H(
√

Cf)2).

21

8 Sculpting in the Computational Complexity Model

In this section, we examine sculpting in the computational complexity model. We start with some
notation. Given a language L ⊆ {0, 1}∗, we let L(x) ∈ {0, 1} be its characteristic function. Also,
given a language L together with a promise P ⊆ {0, 1}∗, we let L|P be the promise problem of
distinguishing the set P ∩ L from the set P \ L.

Now, we call the language L sculptable if there exists a promise P , such that the promise
problem L|P is in PromiseBQP but not in PromiseBPP. We will use the following definition.

Definition 30 ([BH77]). A language L is called paddable, if there exists a polynomial-time function
f(x, y) such that

(1) f is polynomial-time invertible, and

(2) for all x, y, we have x ∈ L ⇐⇒ f(x, y) ∈ L.

In other words, L is paddable if it is possible to “pad out”any input x with irrelevant information
y, in an invertible way, without affecting membership in L.

The paddable languages were introduced by Berman and Hartmanis [BH77], as part of their
exploration of whether all NP-complete languages are polynomial-time isomorphic: they showed
that the answer was ‘yes’ for all paddable NP-complete languages. Under strong cryptographic
assumptions, we now know that there exist NP-complete languages that are neither paddable nor
isomorphic to each other [KMR95]. Nevertheless, it remains the case that almost all the languages
that “naturally arise in complexity theory” are paddable.

Next, let us say that PromiseBQP is hard on average for P/poly if there exists a promise problem
H|S ∈ PromiseBQP, as well as a family of distributions {Dn}n with support on the promise set S,
such that

(1) Dn is samplable in classical poly(n) time, and

(2) there is no family of classical circuits {Cn}n, of size poly(n), such that for all n,

Pr
y∼Dn

[Cn(y) = H(y)] ≥ 3

4
.

So for example, because of Shor’s algorithm [Sho97], combined with the worst-case/average-
case equivalence of the discrete log problem, we can say that if discrete log is not in P/poly, then
PromiseBQP is hard on average for P/poly.

We now prove Theorem 6, which we restate here for convenience.

Theorem 6. Assume PromiseBQP is hard on average for P/poly. Then every paddable language
outside of BPP is sculptable.

Proof. Let L be a paddable language, and let f be the padding function for L. Also, let H|S be
any problem in PromiseBQP that is hard on average for P/poly, and let {Dn}n be the associated
family of hard distributions. Then we need to construct a promise, P ⊆ {0, 1}∗, such that the
promise problem L|P is in PromiseBQP but not in PromiseBPP.

Our promise P will simply consist of all inputs of the form f(x, y, a) such that y ∈ S and

L(x) ≡ H(y) + a (mod 2) .

22

Here a ∈ {0, 1} is a single bit, which we think of as concatenated onto the end of y.
Clearly, L|P is in PromiseBQP: just invert f to extract the “comment”(y, a), then compute

H(y) + a (mod 2).
We need to show that L|P is not in PromiseBPP. Suppose by contradiction that it was, and let

A be the algorithm such that A(x) = L(x) for all x ∈ P . Then we’ll show how to either

(1) decide L in BPP (with no promise), or

(2) decide H in P/poly, with high probability over Dn.

Given an arbitrary input x ∈ {0, 1}n, imagine we do the following: first sample y ∼ Dn, then
run A on the inputs f(x, y, 0) and f(x, y, 1). There are two cases: first suppose

A (f(x, y, 0)) = A (f(x, y, 1)) .

Now, one of the two inputs f(x, y, 0) and f(x, y, 1) must belong to P . If f(x, y, 0) ∈ P , then
A (f(x, y, 0)) = L(x), while if f(x, y, 1) ∈ P , then A (f(x, y, 1)) = L(x). Either way, then, we have
learned whether x ∈ L, and we know we have learned this.

Second, suppose
A (f(x, y, 0)) 6= A (f(x, y, 1)) .

Then assuming y ∈ S:

x ∈ L, y ∈ H =⇒ A (f(x, y, 0)) = 1 =⇒ A (f(x, y, 1)) = 0,

x ∈ L, y /∈ H =⇒ A (f(x, y, 1)) = 1 =⇒ A (f(x, y, 0)) = 0,

x /∈ L, y ∈ H =⇒ A (f(x, y, 1)) = 0 =⇒ A (f(x, y, 0)) = 1,

x /∈ L, y /∈ H =⇒ A (f(x, y, 0)) = 0 =⇒ A (f(x, y, 1)) = 1.

Thus, regardless of whether x ∈ L, we have learned whether y ∈ H, and again we know we have
learned this.

Now suppose there were an input x ∈ {0, 1}n, such that running A as above told us whether
y ∈ H with probability more than (say) 1/2 over the choice of y ∼ Dn. Then let Cn be a
polynomial-size circuit that hardwires x, and that given an input y ∈ S:

• Simulates both A (f(x, y, 0)) and A (f(x, y, 1)).

• Outputs H(y) whenever it successfully learns the value of H(y).

• Guesses a hardwired value for H(y) (whichever of {0, 1} is more probable) whenever it does
not.

Then

Pr
y∼Dn

[Cn(y) = H(y)] ≥ 3

4
,

violating the assumption that no such circuit exists.
So we conclude that for every x ∈ {0, 1}n, we must instead learn whether x ∈ L with probability

at least 1/2 over the choice of y ∼ Dn. This, in turn, means that by simply generating y’s randomly
until we succeed, we can decide L in PromiseBPP.

23

Next, given a languageH ⊆ {0, 1}∗, we sayH is BPP-bi-immune if neitherH nor its complement
H has any infinite subset in BPP. The notion of immunity was introduced by [FS74]. Here is a
useful alternative characterization:

Lemma 31. A language H is BPP-bi-immune if and only if there is no infinite set S ∈ BPP, such
that the promise problem H|S is solvable in PromiseBPP.

Proof. First, suppose H is not BPP-bi-immune, so that either H or H has an infinite subset
S ∈ BPP. Then clearly, S itself is an infinite set in BPP such that the promise problem H|S is
trivial (the answer is either always 0 or always 1).

Conversely, suppose there exists an infinite set S ∈ BPP such that H|S is solvable in polynomial
time. Then clearly S ∩H and S ∩H are both in BPP, and at least one of the two must be infinite.
So H is not BPP-bi-immune.

We now suggest what, as far as we know, is a new conjecture in quantum complexity theory.

Conjecture 32. There exists a BPP-bi-immune language in BQP.

Conjecture 32 is extremely strong. Note, in particular, that none of the “standard”BQP lan-
guages, such as languages based on factoring or discrete log, will be BPP-bi-immune, because they
all have infinite special cases that are classically recognizable and easy (for example, the powers of
2, in the case of factoring). Nevertheless, we believe Conjecture 32 is plausible. As a concrete candi-
date for a BPP-bi-immune language in BQP, let g : {0, 1}∗ → {0, 1}∗ be some strong pseudorandom
generator. Then consider the language

L = {x : g(x), interpreted as a positive integer, has an odd number of distinct prime factors} .

We now prove Theorem 7, restated here for convenience.

Theorem 7. Assume Conjecture 32. Then every language outside of BPP is sculptable.

Proof. Assume by way of contradiction that L /∈ BPP is non-sculptable. Also, let H be a BPP-bi-
immune language in BQP. Then consider the set

S := {x : L(x) = H(x)} .

By our assumption, S is a promise on which no superpolynomial quantum speedup is possible for
L, and S is another such promise. Hence, there must be a BPP algorithm, call it AS , that solves
the promise problem H|S , which (by the definition of S) is equivalent to solving L|S . And there
must be another polynomial-time classical algorithm, call it AS , that solves H|S , which (again by
the definition of S) is equivalent to solving L|S .

Now, given an input x, suppose we run both AS and AS . Then as in the proof of Theorem 6,
there are two possibilities. If AS(x) = AS(x), then x ∈ S implies H(x) = AS(x) while x /∈ S
implies H(x) = AS(x), so either way we have learned H(x) (and we know that we have learned
it). On the other hand, if AS(x) 6= AS(x), then x ∈ S implies L(x) = AS(x) while x /∈ S implies
L(x) = 1−AS(x). So, merely by seeing that AS(x) and AS(x) are different, we have learned L(x)
(and we know that we have learned it).

In summary, there is a BPP algorithm B that, for every input x ∈ {0, 1}∗, correctly outputs
either H(x) or L(x), and that moreover tells us which one it output.

24

Now let Q be the set of all x such that B(x) outputs H(x). Then there are two possibilities: if Q
is finite, then B decides L on all but finitely many inputs. Hence L ∈ BPP, contrary to assumption.
If, on the other hand, Q is infinite, then H|Q is an infinite promise problem in PromiseBPP. So H
was not BPP-bi-immune, again contrary to assumption.

In Theorem 6 and Theorem 7, there is almost nothing specific to the complexity classes BQP
and BPP, apart from some simple closure properties. Thus, one can prove analogous sculpting
theorems for many other pairs of complexity classes. In some cases, we do not even need an
unproved conjecture. For example, we have:

Theorem 33. For every language L /∈ P, there exists a promise S such that L|S is solvable in
exponential time, but is not solvable in polynomial time.

Proof. The proof of Theorem 7 follows through for P and EXP instead of BPP and BQP. In
addition, it is known that there is a P-bi-immune language in EXP [BH77]. The desired result
follows.

9 Concluding Remarks and Open Problems

In this work, we gave a full characterization of the class of Boolean functions f that can be sculpted
into a promise problem with an exponential quantum speedup in query complexity. We similarly
characterized sculptability for R0 vs. R and D vs. R0. Along the way, we showed that Q is polyno-
mially related (indeed, quadratically related) to D and R for a much wider set of promise problems
than was previously known. Finally, we studied sculpting in computational complexity, giving a
strong conjecture under which every language outside BPP is sculptable into a superpolynomial
quantum speedup, and a weaker conjecture under which every paddable language outside BPP is
sculptable.

One might object that many of our sculpted promise problems are somewhat artificial. This is
particularly clear in the case of paddable languages, where (in essence) one uses the paddability to
append to each instance x, as a “comment,” an instance of a hard BQP problem (such as factoring)
that is promised to have the same answer as x. Even in the query complexity setting, however, one
can observe by direct analogy that the property of being sculptable is not closed under the removal
of dummy variables. So for example, we saw before that the N -bit OR function is not sculptable.
By contrast, observe that the function

f(x1, . . . , x2N) := OR(x1, . . . , xN)

is sculptable. This follows as an immediate consequence of Theorem 1: just by adding dummy
variables to the OR function, we have vastly increased the number of inputs x that have large
certificate complexity, from 1 to 2N . However, an even simpler way to see why f is sculptable, is
that we can embed (say) Simon’s problem into the variables xN+1, . . . , x2N , and then impose the
promise that

OR(x1, . . . , xN) = Simon(xN+1, . . . , x2N)

(in addition to the Simon promise itself).
Of course, most Boolean functions do not contain such dummy variables, so the problems of

sculpting them, and deciding whether they are sculptable at all, are much more complicated, as we
saw in this paper.

25

Now, it might feel like “cheating” to sculpt a promise problem with a large quantum/classical
gap by using dummy variables to encode a different, unrelated problem. If so, however, that points
to an interesting direction for future research: namely, can we somehow formalize what we mean by
a “natural” special case of a problem, and can we then understand which problems are “naturally”
sculptable?

Here are some more specific open problems.

• Some of our inequalities could be off by polynomial factors; it would be nice to tighten
them (or prove separations). For example, it may be possible to improve Theorem 3 to
Q(f) = Ω(

√
D(f)/ log |Dom(f)|), quadratically improving the log |Dom(f)| factor.

• Can our results – and specifically, Theorem 5 – be used to improve the relation D(f) =
O(Q(f)6) due to Beals et al. [BBC+01]?

• Can we give a characterization of the sculptable Boolean functions in communication com-
plexity – analogous to this paper’s characterization of sculptability in query complexity?

• Is there any natural pair of complexity classes C ⊆ D, for which C is known or believed to be
strictly contained in D, and yet it is plausible that no languages in D are C-bi-immune, and
(related to that) there exist languages L /∈ C that cannot be sculpted into a promise problem
in D \ C?

• One can, of course, consider sculpting for many other pairs of computational models, besides
R vs. Q or R0 vs. R or D vs. R0. One interesting case is sculpting versus certificate complexity
– for example, D vs. C. What is the correct characterization there?

We make some observations on the last problem. It’s easy to see that D(OR|P) = C(OR|P)
for any promise P , so sculpting D vs. C is not always possible. On the other hand, sculpting D
vs. C is sometimes possible even when H(Cf) is small. To see this, consider the function f with
f(x) = 1 if and only if the Hamming weight of x is 1, and the single ‘1’ bit occurs on the left half
of the input string. This function can be sculpted to D(f |P) = N/2 and C(f |P) = 1 by setting P
to the set of inputs with Hamming weight 1. However, H(Cf) = O(logN) for this function, since
all inputs with Hamming weight at least 2 have small certificates (just display two ‘1’ bits).

This means something qualitatively different happens with D vs. C than what was found in this
paper.

Acknowledgements

We thank Robin Kothari for many helpful discussions.
Supported by an NSF Waterman Award, under grant no. 1249349.

References

[Aar06] Scott Aaronson. Quantum certificate complexity. SIAM Journal on Computing,
35(4):804–824, 2006. [pp. 1, 4, 6, 7]

26

[ABB+15] Andris Ambainis, Kaspars Balodis, Aleksandrs Belovs, Troy Lee, Miklos Santha, and
Juris Smotrovs. Separations in query complexity based on pointer functions. arXiv
preprint arXiv:1506.04719, 2015. [p. 2]

[ABK15] Scott Aaronson, Shalev Ben-David, and Robin Kothari. Separations in query complexity
using cheat sheets. arXiv preprint arXiv:1511.01937, 2015. [p. 2]

[BBC+01] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf.
Quantum lower bounds by polynomials. Journal of the ACM, 48(4):778–797, 2001. [pp.
21, 26]

[BdW02] Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity:
a survey. Theoretical Computer Science, 288(1):21 – 43, 2002. [p. 4]

[BFNR08] Harry Buhrman, Lance Fortnow, Ilan Newman, and Hein Röhrig. Quantum property
testing. SIAM Journal on Computing, 37(5):1387–1400, 2008. [p. 1]

[BH77] Leonard Berman and Juris Hartmanis. On isomorphisms and density of np and other
complete sets. SIAM Journal on Computing, 6(2):305–322, 1977. [pp. 22, 25]

[Cle04] Richard Cleve. The query complexity of order-finding. Information and Computation,
192(2):162–171, 2004. [p. 1]

[FS74] Philippe Flajolet and Jean-Marc Steyaert. On sets having only hard subsets. In Au-
tomata, Languages and Programming, pages 446–457. Springer, 1974. [p. 24]

[Hir05] Jorge E Hirsch. An index to quantify an individual’s scientific research output. Proceed-
ings of the National academy of Sciences of the United States of America, 102(46):16569–
16572, 2005. [p. 1]

[KMR95] Stuart A Kurtz, Stephen R Mahaney, and James S Royer. The isomorphism conjecture
fails relative to a random oracle. Journal of the ACM (JACM), 42(2):401–420, 1995. [p.
22]

[KR11] Bo’az Klartag and Oded Regev. Quantum one-way communication can be exponentially
stronger than classical communication. In Proceedings of the forty-third annual ACM
symposium on Theory of computing, pages 31–40. ACM, 2011. [p. 11]

[Kre95] Ilan Kremer. Quantum communication. PhD thesis, Citeseer, 1995. [p. 11]

[KT13] Raghav Kulkarni and Avishay Tal. On fractional block sensitivity. Electronic Colloquium
on Computational Complexity (ECCC) TR13-168, 2013. [p. 4]

[Raz99] Ran Raz. Exponential separation of quantum and classical communication complexity.
In Proceedings of the thirty-first annual ACM symposium on Theory of computing, pages
358–367. ACM, 1999. [p. 11]

[Sau72] Norbert Sauer. On the density of families of sets. Journal of Combinatorial Theory,
Series A, 13(1):145–147, 1972. [pp. 5, 29]

27

http://arxiv.org/abs/arXiv:1506.04719
http://arxiv.org/abs/arXiv:1511.01937
http://eccc.hpi-web.de/report/2013/168/

[She72] Saharon Shelah. A combinatorial problem; stability and order for models and theories
in infinitary languages. Pacific Journal of Mathematics, 41(1):247–261, 1972. [p. 5]

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509, 1997.
[pp. 1, 22]

[Yao77] Andrew Chi-Chih Yao. Probabilistic computations: toward a unified measure of com-
plexity. In Annual Symposium on Foundations of Computer Science, volume 17, page
222. Institute of Electrical and Electronics Engineers, 1977. [p. 13]

A Properties of H Indices

Lemma 34. Let g : {0, 1}n → [0,∞). Define

H(g) := inf
{
h ∈ [0,∞) : |{x ∈ {0, 1}n : g(x) > h}| ≤ 2h

}
.

Then

1. H(g) ∈ [0, n]

2. H(g) ≤ maxx g(x)

3. The number of x ∈ {0, 1}n for which g(x) > H(g) is at most 2H(g) (equivalently, the infimum
in the definition of H(g) is actually a minimum)

4. If g′ : {0, 1}n → [0,∞) is such that g(x) ≤ g′(x) for all x ∈ {0, 1}n, then H(g) ≤ H(g′)

5. If α : [0,∞)→ [0,∞) is an increasing function, then H(α ◦ g) ≤ max{H(g), α(H(g))}.

6. There are at least 2H(g) inputs x ∈ {0, 1}n with g(x) ≥ H(g).

Proof. Let Sg(h) = {x ∈ {0, 1}n : g(x) > h} and let Hg = {h ∈ [0,∞) : |Sg(h)| ≤ 2h}. Then
H(g) = inf Hg. Part 1 follows from noticing that for all h, Sg(h) ⊆ {0, 1}n, so |Sg(h)| ≤ 2n, whence
n ∈ Hg. Part 2 follows from noticing that Sg(maxx g(x)) is empty, so maxx g(x) ∈ Hg.

To show 3, we show that Hg contains its infimum. Consider an infinite decreasing sequence
h1, h2, . . . ∈ Hg that converges to H(g). Then the sequence |Sg(h1)|, |Sg(h2)|, . . . is a non-decreasing
sequence of integers which is bounded above by 2n. In addition, Sg(hi) ⊆ Sg(hi+1) for all i. It
follows that there is some ` such that Sg(hi) = Sg(h`) for all i ≥ `. For each x ∈ Sg(h`), we have
g(x) > h` > H(g), and for each x /∈ Sg(h`), we have g(x) ≤ hi for all i. It follows that g(x) ≤ H(g)
for each x /∈ Sg(h`), so Sg(H(g)) = {x ∈ {0, 1}n : g(x) > H(g)} = Sg(hi) for all i ≥ `. Finally,
since hi ∈ Hg for all i, we have |Sg(H(g))| = |Sg(hi)| ≤ 2hi for all i ≥ `. From this it follows that
|Sg(H(g))| ≤ limi→∞ 2hi = 2H(g), so H(g) ∈ Hg.

We now show 4. If g′ is point-wise greater or equal to g, then Sg(H(g′)) ⊆ Sg′(H(g′)). Since
H(g′) ⊆ Hg, we have |Sg′(H(g′))| ≤ 2H(g′), so |Sg(H(g′))| ≤ 2H(g′). Thus H(g′) ∈ Hg, so H(g) =
inf Hg ≤ H(g′).

We prove 5. Let α be an increasing function. We have

Sg(H(g)) = {x ∈ {0, 1}n : g(x) > H(g)} = {x ∈ {0, 1}n : α ◦ g(x) > α(H(g))} = Sα◦g(α(H(g)).

28

Thus

|Sα◦g(max{H(g), α(H(g))})| ≤ |Sα◦g(α(H(g))| = |Sg(H(g))| ≤ 2H(g) ≤ 2max{H(g),α(H(g))}

so max{H(g), α(H(g))} ∈ Hα◦g. Hence H(α ◦ g) ≤ max{H(g), α(H(g))}.
Finally, we show 6. If it was false, there would be less than 2H(g) inputs with g(x) ≥ H(g). Thus

there is some ε > 0 such that there are less than 2H(g)−ε inputs with g(x) ≥ H(g) > H(g)− ε. But
this implies H(g)− ε ≥ H(g), a contradiction.

B Proof of Lemma 8

Lemma 8. Let S ⊆ {0, 1}N be a collection of strings. Then there is a shattered set of indices of
size at least

log |S|
log(N + 1)

.

Proof. Let d be the size of the largest set that is shattered by S. Then the Sauer-Shelah lemma
[Sau72] states

|S| ≤
d∑
i=0

(
N

i

)
.

A well-known bound states
d∑
i=0

(
N

i

)
≤ 2H(d/N)N ,

where H(d/N) is the binary entropy of d/N . Then

log2 |S| ≤ H(d/N)N = d log2(N/d) + (N − d) log2(1 + d/(N − d))

≤ d log2(N/d) + d log2 e = d log2N − d log2(d/e) ≤ d log2N

(if d ≥ e). Thus

d ≥ log |S|
logN

unless d ≤ 2.
The Sauer-Shelah lemma implies |S| ≤ 1 when d = 0 and |S| ≤ N2 when d = 2 (assuming

N ≥ 2). The only problematic case is d = 1 and |S| = N + 1. Thus, in all cases, we have
d ≥ log |S|/ log(N + 1), as desired.

29

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

