
On Sums of INW Pseudorandom Generators

William M. Hoza
Department of Computer Science

The University of Chicago
williamhoza@uchicago.edu

Zelin Lv
Department of Computer Science

The University of Chicago
zlv@uchicago.edu

Abstract

We study a new approach for constructing pseudorandom generators (PRGs) that fool constant-width
standard-order read-once branching programs (ROBPs). Let X be the n-bit output distribution of the
INW PRG (Impagliazzo, Nisan, and Wigderson, STOC 1994), instantiated using expansion parameter
λ. We prove that the bitwise XOR of t independent copies of X fools width-w programs with error
nlog(w+1) · (λ · log n)t. Notably, this error bound is meaningful even for relatively large values of λ such as
λ = 1/O(log n).

Admittedly, our analysis does not yet imply any improvement in the bottom-line overall seed length
required for fooling such programs – it just gives a new way of re-proving the well-known O(log2 n) bound.
Furthermore, we prove that this shortcoming is not an artifact of our analysis, but rather is an intrinsic
limitation of our “XOR of INW” approach. That is, no matter how many copies of the INW generator
we XOR together, and no matter how we set the expansion parameters, if the generator fools width-3
programs and the proof of correctness does not use any properties of the expander graphs except their
spectral expansion, then we prove that the seed length of the generator is inevitably Ω(log2 n).

Still, we hope that our work might be a step toward constructing near-optimal PRGs fooling constant-
width ROBPs. We suggest that one could try running the INW PRG on t correlated seeds, sampled via
another PRG, and taking the bitwise XOR of the outputs.

1 Introduction

1.1 Pseudorandom generators for space-bounded computation

Randomness can be considered a type of “fuel” for computation. We prefer to use as little randomness as
possible, just like we prefer to minimize consumption of other types of “fuel.” A pseudorandom generator
(PRG) is a way of decreasing the number of random bits used in computation.

Definition 1.1 (PRG). Let X be a distribution over {0, 1}n and let f : {0, 1}n → {0, 1}. We say that X
fools f with error ε if

|E[f(X)]− E[f]| ≤ ε.

Here E[f] is a shorthand for E[f(U{0,1}n)], where, in general, UR denotes the uniform distribution over the
finite set R. A pseudorandom generator (PRG) is a function G : R → {0, 1}n for some finite set R. We say
that G fools f with error ε if G(UR) fools f with error ε. The seed length of the PRG is the quantity log |R|.1

In this paper, we study PRGs in the context of space-bounded computation. If we wish to simulate
a randomized space-bounded algorithm, then we ought to use a PRG that fools standard-order read-once
branching programs (ROBPs), defined next.

Definition 1.2 (Standard-order ROBP). A width-w length-n standard-order read-once branching program
(ROBP) is a directed acyclic multigraph. The vertices are arranged in n + 1 layers V0, V1, . . . , Vn, each
consisting of w vertices. Each vertex in Vi where i < n has two outgoing edges leading to Vi+1 labeled 0 and

1Usually we want the domain to have the form R = {0, 1}s for some s ∈ N, but in this work we allow arbitrary domains.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 50 (2025)

mailto:williamhoza@uchicago.edu
mailto:zlv@uchicago.edu

1. One vertex v0 ∈ V0 is designated as the start vertex, and each vertex v ∈ Vn is labeled with an output
value qv ∈ {0, 1}. Each input x ∈ {0, 1}n selects a walk through the program, defined by starting at v0 and
traversing the outgoing edge with label xi in step i. This walk ends at some vertex v ∈ Vn. The program
computes the function f given by f(x) = qv.

Polynomial-width standard-order ROBPs describe what log-space randomized algorithms do as a function
of their random bits. In this paper, we focus on the constant-width case. There isn’t necessarily a clear
connection between constant-width ROBPs and uniform models of computation such as randomized Turing
machines, but constant-width ROBPs still constitute an extremely interesting nonuniform model of space-
bounded computation. The width-2 case is well-understood [SZ95; BDVY13; HH24; Kum25]. In particular,
Saks and Zuckerman showed in the 1990s that there is an explicit PRG that fools width-2 branching programs
with seed length O(log n) [SZ95], which is optimal. Decades later, Meka, Reingold, and Tal showed that there
is an explicit PRG that fools width-3 standard-order ROBPs with seed length Õ(log n) [MRT19]. However,
the best seed length bound for width-4 programs is O(log2 n), which is a special case of the following classic
theorem.

Theorem 1.3 ([Nis92]). For every w, n ∈ N and every ε ∈ (0, 1), there exists an explicit PRG that fools
width-w length-n standard-order ROBPs with error ε and seed length O(log(wn/ε) · log n).

The original proof of Theorem 1.3 is due to Nisan [Nis92]. There is an alternative proof due to Impagliazzo,
Nisan, and Wigderson [INW94] that is more relevant to the present paper. Impagliazzo, Nisan, and Wigderson
inductively defined a sequence of PRGs G0, G1, . . . , where Gj : Rj → {0, 1}2j , as follows.

1. Base case: Let R0 = {0, 1} and G0(x) = x.

2. Inductive step: Assume we have already constructed Gj−1. Let Hj be a Dj-regular undirected
multigraph on the vertex set Rj−1. Define Rj = Rj−1 × [Dj] and

Gj(x, y) = (Gj−1(x), Gj−1(Hj [x, y])).

Here Hj [x, y] denotes the y-th neighbor of the vertex x in Hj .

Impagliazzo, Nisan, and Wigderson’s original analysis [INW94] shows that if λ(Hj) ≤ λ for every j, then
Glogn fools width-w length-n standard-order ROBPs with error λ · w · n. Here λ(Hj) denotes the spectral
expansion parameter of Hj , which can be defined as the second largest eigenvalue of its transition probability
matrix in absolute value. There are numerous explicit constructions of expander graphs Hj such that
λ(Hj) ≤ λ and deg(Hj) ≤ poly(1/λ). (See, for example, Vadhan’s pseudorandomness survey [Vad12].) If we
use such expander graphs, then the seed length of Glogn is O(log n · log(1/λ)). Choosing λ = ε

wn completes
the proof of Theorem 1.3.

1.2 Instantiating the INW PRG with relatively mild expanders

It is a major open problem to design PRGs that fool constant-width standard-order ROBPs with seed
length o(log2 n). A natural thing to try is to simply increase the parameter λ in the INW construction.
Indeed, even when λ is relatively large, it turns out that the INW generator still does a good job of fooling
so-called “regular” and “permutation” ROBPs [BRRY14; De11; KNP11; Ste12; HPV21]. More generally,
one can try using different values of λ at the different levels of the recursion, say λ1, . . . , λlogn. For example,
Rozenman and Vadhan showed how to use the INW generator, with λj = Ω(1) for most but not all j, to
solve the undirected s-t connectivity problem in deterministic log-space [RV05], re-proving Reingold’s famous
theorem [Rei08].

Unfortunately, it turns out that no matter how we set the expansion parameters, the INW generator is
provably too weak to fool constant-width standard-order ROBPs with seed length o(log2 n) [BV10b; HPV24].
Making this statement precise is a little subtle, because “the” INW generator is actually a whole family
of PRGs, even after we fix the expansion parameters λ1, . . . , λlogn. After all, the definition of the PRG

2

does not specify which specific expander graphs to use. For a vector λ⃗ = (λ1, . . . , λlogn), let us define

INW(λ⃗) to be the set of all PRGs Glogn that can be constructed via the INW template using graphs
H1, . . . ,Hlogn satisfying λ(Hj) ≤ λi for every j. As a shorthand, let us also write INW(λ) for the special case
λ1 = λ2 = · · · = λlogn = λ when n is clear from context. (See Definition 2.13 for a more detailed definition.)
Then we have the following theorem due to Brody and Verbin [BV10b], with details filled in by Hoza, Pyne,
and Vadhan [HPV24]:

Theorem 1.4 (Limitations of the INW generator [BV10b; HPV24]). Let λ⃗ = (λ1, . . . , λlogn) ∈ [0, 1]logn. If

every PRG in the family INW(λ⃗) fools width-3 standard-order ROBPs with error 0.99, then λj ≤ 1/nΩ(1) for

Ω(log n) values of j, and moreover every PRG in the family INW(λ⃗) has seed length Ω(log2 n).

Theorem 1.4 can be interpreted as saying that if one wishes to use the INW template to construct a PRG
that fools width-3 standard-order ROBPs with seed length o(log2 n), then the proof of correctness would
have to exploit some property of the specific graphs H1, . . . ,Hlogn beyond their spectral expansion. It is not
clear what property would be helpful.

1.3 A possible way forward: Unpredictability and Yao’s XOR Lemma

In this paper, we propose a new approach for constructing a near-optimal PRG fooling constant-width
standard-order ROBPs. The approach is based on the classic notion of unpredictability. Specialized to the
setting of standard-order ROBPs, unpredictability can be defined as follows.

Definition 1.5 (Unpredictability). Let X be a distribution over {0, 1}n. We say that X is δ-unpredictable
for width-w standard-order ROBPs if, for every i ∈ [n] and every width-w length-(i − 1) standard-order
ROBP f : {0, 1}i−1 → {0, 1}, we have

Pr[f(X1, X2, . . . , Xi−1) = Xi] ≤
1

2
+ δ.

If X = G(UR) where G : R → {0, 1}n, then we also describe G itself as being δ-unpredictable for width-w
standard-order ROBPs.

Interestingly, even though INW(1/ polylog n) does not fool width-3 programs (Theorem 1.4), it turns out
that INW(1/ polylog n) is unpredictable for constant-width programs. More precisely, Fefferman, Shaltiel,
Umans, and Viola showed that every PRG in the family INW(λ) is O(w · λ · log n)-unpredictable for width-w
standard-order ROBPs [FSUV13].2

How can we leverage the unpredictability of the INW generator to construct a PRG that actually fools
constant-width ROBPs? Fefferman, Shaltiel, Umans, and Viola suggested combining the INW generator
with a randomness extractor [FSUV13]. We propose a different approach, inspired by Yao’s XOR Lemma in
circuit complexity. Yao’s XOR Lemma is about the average-case hardness of computing a Boolean function,
or more generally the hardness of guessing a Boolean random variable Y ∈ {0, 1} given some correlated
random variable X ∈ {0, 1}n. Let (X(1), Y (1)), . . . , (X(t), Y (t)) be t independent copies of (X,Y). Roughly
speaking, Yao’s XOR Lemma says that if it is “somewhat hard” to guess Y given X, then it is “very hard”
to guess Y (1) ⊕ · · · ⊕ Y (t) given X(1), . . . , X(t). Here “somewhat hard” means that all small circuits have,
e.g., a constant failure probability, and “very hard” means that all small circuits have a failure probability
very close to 1/2.

Maurer and Tessaro observed that Yao’s XOR Lemma implies that the bitwise XOR operation amplifies
cryptographic unpredictability [MT09]. In more detail, let X be a distribution that is δ-unpredictable for
small circuits for a relatively large value of δ such as δ = 0.1. Let X ′ = X(1)⊕· · ·⊕X(t), where X(1), . . . , X(t)

2One way to prove this statement is to use the notion of weight introduced by Braverman, Rao, Raz, and Yehudayoff [BRRY14].
For any next-bit predictor f : {0, 1}i−1 → {0, 1}, we can define a test g : {0, 1}i → {0, 1} that checks whether f succeeds:
g(x1, . . . , xi) = f(x1, . . . , xi−1)⊕ xi. If f can be computed by a width-w standard-order ROBP, then g can be computed by a
width-w standard-order ROBP with weight two. From here, Braverman, Rao, Raz, and Yehudayoff’s analysis shows that INW(λ)
fools g with error O(w · λ · logn) [BRRY14].

3

are independent copies of X. Yao’s XOR Lemma implies that if a small circuit attempts to guess the i-th bit
of X ′ given the first i− 1 bits of each copy X(1), . . . , X(t), then its success probability will be very close to
1/2. If the circuit is only given the first i− 1 bits of X ′, then the prediction task becomes even more difficult.
Thus, X ′ is δ′-unpredictable for small circuits where δ′ ≪ δ.

Intuitively, we expect the same phenomenon to occur in the ROBP setting. If X ′ is the bitwise XOR
of t independent copies of some distribution X that is δ-unpredictable for constant-width standard-order
ROBPs, then we expect X ′ to be δ′-unpredictable for such programs, where δ′ ≈ δt. By Yao’s so-called
“distinguisher-to-predictor lemma,” this would imply that X ′ actually fools such programs with error δ′ · n.
Based on these considerations, we propose the following two-step approach for constructing near-optimal
PRGs fooling constant-width standard-order ROBPs.

• Step 1: Let G ∈ INW(1/ polylog n) be a PRG with seed length s = Õ(log n). Prove that if we
sample t ≈ log n seeds Z(1), . . . , Z(t) independently and uniformly at random, then the bitwise XOR
G(Z(1))⊕ · · · ⊕G(Z(t)) fools constant-width standard-order ROBPs.

• Step 2: Derandomize the proof of Step 1. That is, prove that G(Z(1))⊕ · · · ⊕G(Z(t)) fools constant-
width standard-order ROBPs even if the seeds Z(1), . . . , Z(t) are not independent, but rather they are
generated in some pseudorandom manner using only Õ(log n) truly random bits.

1.4 Sums of INW generators fool constant-width ROBPs

One of the main results of this paper is to accomplish “Step 1” described above. To state our results more
precisely, let us make the following definition.

Definition 1.6 (XOR of INW generators). Let n, t ∈ N where n is a power of two, and let Λ ∈ [0, 1]t×logn.
Let INW⊕t(Λ) denote the set of all PRGs G : R1 × · · · × Rt → {0, 1}n of the form

G(z(1), . . . , z(t)) = G(1)(z(1))⊕ · · · ⊕G(t)(z(t)),

where G(i) ∈ INW(Λi) for every i ∈ [t]. Here Λi denotes the i-th row of Λ. As a shorthand, we also write
INW⊕t(λ) if every entry of Λ is equal to λ and n is clear from context.

We prove the following.

Theorem 1.7 (INW⊕t fools constant-width ROBPs). Let n,w, t ∈ N where n is a power of two, and let
Λ ∈ [0, 1]t×logn. Every PRG in the family INW⊕t(Λ) fools width-w length-n standard-order ROBPs with error

nlog(w+1) ·
t∏

i=1

logn∑
j=1

Λi,j .

For example, Theorem 1.7 implies that there is a value t = Θ(logw·logn+log(1/ε)
log logn) such that INW⊕t(1/ log2 n)

fools width-w length-n standard-order ROBPs with error ε. By plugging in explicit expanders of degree
poly(1/λ), we get an explicit PRG that fools width-w length-n standard-order ROBPs with error ε and seed
length

O(log2 n · logw + log n · log(1/ε)),

re-proving Theorem 1.3 in the case w = O(1). For context, prior to our work, there were already several
different known ways to construct PRGs that fool constant-width standard-order ROBPs (and more general
models) using a seed of length O(log2 n) [Nis92; INW94; Arm98; RR99; GR14; BCG20] or Õ(log2 n) [FK18].
Our Theorem 1.7 adds to this list.

We hope that there is value in having yet another proof of the O(log2 n) bound, but of course the real
goal is to construct a PRG with seed length o(log2 n). As discussed previously, we believe that the most
promising approach (“Step 2” in our proposal) is to “derandomize” Theorem 1.7, i.e., prove that a similar
error bound holds even if the t seeds for the INW generators are chosen in some pseudorandom manner

4

instead of sampling them independently. So far, we have not figured out how to make such an approach work.
However, we would like to point out several “success stories” describing cases in which prior researchers
managed to solve similar problems:

• There are known derandomized versions of Yao’s XOR Lemma [Imp95; IW97; CL21].

• The first asymptotically optimal “small-bias” generator, due to Naor and Naor [NN93], works by
plugging several correlated seeds into a weak initial generator and taking the bitwise XOR of the
results [NN93].

• There are several constructions of low-error “weighted pseudorandom generators” and “hitting set
generators” for space-bounded computation that work by plugging several correlated seeds into a
“moderate-error” initial PRG and then combining the results in some manner [HZ20; PV21; CDRST21;
Hoz21; BHPP22; CHLTW23; CL24; CW25].

We find these success stories encouraging.

1.5 Summing fewer copies of the INW generator does not work

Instead of analyzing correlated seeds, we can also consider a different and more straightforward approach for
improving the seed length of our PRG. What happens if we take an XOR of fewer copies of the INW generator
while still using relatively mild expander graphs? For example, what if we try INW⊕2(1/polylog n)?

We are inspired to ask this question because of a line of work on the bitwise XOR of small-bias distributions.
Recall that by definition, a distribution X over {0, 1}n is ε-biased if, for every nonempty set S ⊆ [n], we
have |Pr[⊕i∈SXi = 0] − Pr[⊕i∈SXi = 1]| ≤ ε. A sequence of works has shown that the bitwise XOR of d
independent small-bias distributions fools degree-d polynomials over F2, whereas the XOR of only d − 1
small-bias distributions does not (unless the bias parameter is extremely small) [BV10a; Lov09; Vio09;
LT09]. This demonstrates that a bitwise XOR of a small number of “weak” PRGs can sometimes be quite
strong. Indeed, the XOR of just two small-bias distributions has been proposed as a candidate PRG for
ROBPs [MZ09; LV17].

Unfortunately, we prove that INW⊕2(1/ polylog n) is not capable of fooling width-3 standard-order
ROBPs. More generally, no matter how many or how few copies of the INW generator we XOR together,
and no matter how we set the expansion parameters, if the resulting PRG fools width-3 programs, then the
seed length is inevitably Ω(log2 n):

Theorem 1.8 (Limitations of INW⊕t). Let n be a power of two, let t ∈ N, and let Λ ∈ [0, 1]t×logn. If every
PRG in the family INW⊕t(Λ) fools width-3 standard-order ROBPs with error 0.99, then every PRG in the
family INW⊕t(Λ) has seed length Ω(log2 n).

1.6 Increasing t vs. decreasing λ: Two incomparable PRG paradigms

Motivated by Theorems 1.7 and 1.8, we wish to better understand how our new INW⊕t generator compares
to the classic INW generator. To be more precise, suppose that for some relatively large value of λ, it turns
out that INW(λ) is too weak to fool some class of functions. To strengthen the PRG, one could try using
INW⊕t(λ) for some t > 1, or one could try using INW(λ′) for some λ′ < λ. Which approach is better?

We prove that these two approaches are in fact incomparable in general. There are cases in which one
approach is better, and there are cases in which the other approach is better. We state these results precisely
in the following two theorems. The first theorem describes a case in which summing multiple generators is
the better approach.

Theorem 1.9 (A case where XORing is cheaper than using heavy-duty expanders).

1. For every λ ∈ (0, 1), every PRG in INW⊕2(λ) fools quadratic polynomials over F2 with error O(
√
λ).

5

2. Let λ⃗ ∈ [0, 1]logn where n is a power of two. If every PRG in INW(λ⃗) fools quadratic polynomials over
F2 with error 0.49, then λj ≤ 2−Ω(2j) for every j ≥ 4, and moreover every PRG in INW(λ⃗) has seed
length Ω(n).3

Item 1 in the theorem above is an immediate consequence of prior work [KNP11; De11; Ste12; BV10a;
Lov09; Vio09]. The main content of the theorem is Item 2. Theorem 1.9 demonstrates the strength of the
“XOR of INW” paradigm. We hope that future researchers can capitalize on the strengths of the INW⊕t

generator to develop better PRGs for ROBPs. Next, let us discuss a case in which summing multiple INW
generators is worse than simply using one INW generator with a slightly smaller λ value.

Theorem 1.10 (A case where using heavy-duty expanders is cheaper than XORing). Let n be a power of
two and let λ ∈ (1000n , 12). There exist λ′ = Ω(λ2) and f : {0, 1}n → {0, 1} such that the following hold.

1. Every PRG in INW(λ′) fools f with error 0.01.

2. Let t ∈ N. If every PRG in INW⊕t(λ) fools f with error 0.99, then t ≥ Ω(λ · n/ log n), and moreover
every PRG in INW⊕t(λ) has seed length Ω(n · λ · log(1/λ)).

Theorem 1.10 is valuable because it helps us to interpret Theorem 1.7. Theorem 1.7 says that constant-
width ROBPs are so weak that they are even fooled by a sum of INW(1/polylog n) generators, which is
more meaningful in light of the fact that a sum of INW(1/ polylog n) generators is in some ways weaker than
a single INW(1/poly(n)) generator (Theorem 1.10). We hope that future researchers can further exploit the
weaknesses of constant-width ROBPs to fool them with a shorter seed.

It might be instructive to compare INW⊕t(λ) with a different family of PRGs. Let Gt(λ) denote the set
of generators one can construct by the following recursive paradigm:

G0(x) = x

Gi+1(x, y) = (Gi(x), Gi(H
t
i+1[x, y])),

where Hi+1 is a graph satisfying λ(Hi+1) ≤ λ. This is the same as the definition of the INW generator,
except that we use a t-th power of an expander graph instead of using a generic expander graph. Then
Gt(λ) ⊆ INW(λt), so a theorem saying “Every PRG in Gt(λ) fools width-w length-n standard-order ROBPs
with error λt · w · n” would be true but not interesting. In contrast, Theorem 1.10 implies that INW⊕t(λ) ̸⊆
INW(λt), and we believe that Theorem 1.7 is saying something new and interesting.

1.7 Proof techniques

1.7.1 Our proof that INW⊕t(λ) fools ROBPs, even if λ is relatively large

In this section, we give a brief informal overview of our proof of Theorem 1.7, our positive result on using
INW⊕t(Λ) to fool constant-width standard-order ROBPs. For simplicity’s sake, let us focus on the case
that Λi,j = λ for every i, j, and let us assume that we take the XOR of t copies of the same generator in
INW(λ). The analysis is based on the following alternative, equivalent description of the resulting PRG. We
inductively define a sequence of PRGs G0, G1, G2, . . . , where Gi : Rt

i → {0, 1}2i , as follows.

1. Base case: Let R0 = {0, 1} and let G0(x1, . . . , xt) = x1 ⊕ · · · ⊕ xt.

2. Inductive step: Assume we have already constructed Gj−1. Let Hj be a Dj-regular expander graph on
the vertex set Rj−1 satisfying λ(Hj) ≤ λ. Define Rj = Rj−1 × [Dj] and

Gj((x1, y1), . . . , (xt, yt)) = (Gj−1(x1, . . . , xt), Gj−1(Hj [x1, y1], . . . ,Hj [xt, yt])). (1)
3We remark that the distinguishers we construct are read-once quadratic polynomials, and hence they can be computed by

width-4 ROBPs that read their input bits in some nonstandard order. This is an example showing that the INW generator does
not fool arbitrary-order ROBPs. Tzur previously showed that Nisan’s PRG has this same weakness [Tzu09], but to the best of
our knowledge, ours is the first such example regarding the INW generator. We thank Adin Gitig for pointing out this gap in the
literature.

6

In effect, Eq. (1) says that at each stage of the recursion, we use a tensor product of expander graphs
(Hj ⊗ · · · ⊗Hj) to recycle the seed (x1, . . . , xt). Note that tensoring does not improve expansion: λ(Hj ⊗
· · · ⊗Hj) = λ(Hj).

Our job is to show that Gj fools width-w standard-order ROBPs. For simplicity’s sake, let us focus on
showing that the last bit of the output of Gj is δ-unpredictable for such programs where δ = wj · (jλ)t. Let
f be a width-w program that attempts to predict the last bit of the output of Gj , given all the previous bits.
The idea is to write the transition probability matrix of Hj ⊗ · · · ⊗Hj in the form

(J + E)⊗ (J + E)⊗ · · · ⊗ (J + E).

Here J is the transition matrix of the complete graph with self-loops, and E is an “error matrix” with
operator norm at most λ. After expanding, we get a sum of terms, each of which has the form J⊗k ⊗E⊗(t−k)

(after reordering if necessary).
To analyze such a term, we can first consider any fixing of the last t− k parts of the seed, allowing us

to focus on the J⊗k factor. This J⊗k factor corresponds to running INW(λ)⊕k twice, on two independent
seeds, and concatenating the results. Since f is trying to predict the last bit, the first copy of INW(λ)⊕k is
completely irrelevant; it does not give f any advantage whatsoever. Meanwhile, by induction, the second
copy is ε-unpredictable where ε = wj−1 · ((j − 1) · λ)k. Meanwhile, the matrix E⊗(t−k) has operator norm at
most λt−k. As it turns out, this has the effect of dampening the inductive advantage bound by a factor of
w · λt−k, so that overall the advantage from the J⊗k ⊗ E⊗(t−k) term is at most wj · (j − 1)k · λt. Summing
over all terms, we get an overall advantage bound of wj · λt ·

∑t
k=0

(
t
k

)
(j − 1)k = wj · (jλ)t.

In the full proof, in order to optimize parameters and to make the proof as simple as possible, we
ultimately do not formally use the notion of unpredictability, but the idea remains the same.

1.7.2 Our proof that sums of INW PRGs with seed length o(log2 n) do not fool ROBPs

Next, let us discuss our proof that if the entries of Λ are large enough that there exists a generator in
INW⊕t(Λ) with seed length o(log2 n), then the entries of Λ are so large that there exists a generator in
INW⊕t(Λ) that does not fool width-3 programs (Theorem 1.8). For simplicity’s sake, let us focus on the
case t = 2. The proof builds on the works of Brody and Verbin [BV10b], Hoza, Pyne, and Vadhan [HPV24],
and Lee and Viola [LV17]. We construct our INW⊕2 generator using Cayley graphs over the group Fn

2 , i.e.,
expander graphs of the form H[x, y] = x⊕G(y) where G is a small-bias generator. By using both Cayley
graphs and complete graphs where appropriate, we ensure that the output of our INW⊕2 generator has many
substrings of the form

(x⊕ x′, x⊕ x′ ⊕G(y)⊕G(y′)),

where x, x′, G(y), G(y′) ∈ {0, 1}m for some m = Θ(log n).
We instantiate G using a small-bias generator constructed by Lee and Viola [LV17]. Their generator

outputs noisy codewords, i.e., the output is a+ b where a is a random element of a subspace C⊥ ⊆ Fm
2 and

b is a random vector of low Hamming weight. Crucially, Lee and Viola observe that the sum of two noisy
codewords is another noisy codeword. Consequently, letting z = x⊕ x′, the output of our INW⊕2 generator
has many substrings of the form

(z, something close to C⊥ ⊕ z).

The specific parameters ensure that the description above is nontrivial, i.e., there is some v∗ such that such a
substring is never equal to (0m, v∗). Our width-3 distinguisher checks all the relevant regions of its input and
accepts if it ever sees the specific substring (0m, v∗). With some tweaks, it turns out that this approach is
strong enough to prove Theorem 1.8.

1.7.3 Our proof that INW with small λ is incomparable with INW⊕t with large λ

Next, let us briefly explain how we construct an INW generator G that does not fool quadratic polynomials
over F2 (Item 2 in Theorem 1.9). The construction is based on the inner product function IP. We construct

7

an expander graph H = (V,E) such that IP(x, y) = 0 for every (x, y) ∈ E. The construction is essentially
E = IP−1(0), except that we have to redirect a few edges to ensure that the graph is regular. Using this
expander graph H, we can construct an INW generator whose output is always rejected by IP. In contrast,
E[IP] = 1/2− o(1) under the uniform distribution.

Finally, let us briefly discuss the proof of Theorem 1.10 (a case where INW⊕t(λ) performs poorly, but
INW(λ′) performs well when λ′ is slightly smaller than λ). We use Cayley graphs to construct an INW⊕t(λ)
generator that has many (2m)-bit substrings of the form(

t⊕
i=1

xi,

t⊕
i=1

(xi ⊕Gi(yi)),

t⊕
i=1

x′i,

t⊕
i=1

(x′i ⊕Gi(y
′
i))

)
,

where G1, . . . , Gt are small-bias generators, and, crucially, we ensure that y1 and y′1 disagree somewhere in
their last log(1/λ) bits.

Our distinguisher begins by canceling out the x’s to compute the sums
⊕t

i=1Gi(yi) and
⊕t

i=1Gi(y
′
i). Next,

the distinguisher inverts these sum-of-small-bias generators to compute the underlying seeds y1, . . . , yt, y
′
1, . . . , y

′
t.

(We use a probabilistic argument to show that there exist small-bias generators G1, . . . , Gt for which this
inversion procedure is possible.) Finally, the distinguisher rejects if the last log(1/λ) bits of y1 agree with the
last log(1/λ) bits of y′1, and otherwise it accepts.

By construction, the distinguisher accepts every output of our INW⊕t(λ) generator. In contrast, we show
that it has low acceptance probability under any INW(λ′) generator, where λ′ is just a little smaller than λ.
The proof is based on two ideas.

• In later rounds of the INW recursion, we can use standard techniques based on “communication
bottlenecks” to argue that the expander graph in the INW construction does not introduce much error.
In particular, after processing

⊕
i xi and

⊕
i(xi ⊕Gi(yi)), the distinguisher only needs to remember

the last log(1/λ) bits of the computed seed y1. As a result, the acceptance probability is close to what
it would be if we used independent seeds instead of correlated seeds in these later rounds of the INW
construction.

• Our remaining task is to bound our distinguisher’s acceptance probability under a concatenation of
many independent INW(λ′) generators, each of which outputs m bits. We are not able to say anything
about the distribution of the distinguisher’s computed y1 seed. However, simply because they are
independent and identically distributed, there is a noticeable chance that the distinguisher’s computed
y1 and y′1 seeds happen to agree in their last log(1/λ) bits. By doing O(1/λ) independent trials, we
ensure that the overall acceptance probability is low.

1.8 Additional related work

Assadi and N established a general XOR lemma for streaming algorithms [AN21] (see also work by Lee, Pyne,
and Vadhan [LPV23]). However, their XOR lemma does not imply anything about INW⊕t, because they
focus on the scenario in which the streaming algorithm sees t instances of a problem in sequence, one after
another, instead of seeing the bitwise XOR of the instances.

Several prior works have proved limitations on the power of sums of small-bias distributions to fool
various types of tests [BV10a; LT09; MZ09; BDVY13; LV17]. Our negative result about using INW⊕t to fool
ROBPs (Theorem 1.8) is in a similar spirit, and indeed the proof builds on Lee and Viola’s work [LV17] as
mentioned previously.

1.9 Organization

After some preliminaries, we show that sums of INW generators fool constant-width ROBPs in Section 3. In
Section 4, we show that summing fewer copies of the INW generator does not work, that is, the seed length
is inevitably Ω(log2 n). Then we prove an XOR of multiple INW generators, each with a relatively large λ

8

value, and a single INW generator, with a relatively small λ value are actually incomparable in general. In
Section 6, we show that INW⊕2(large λ) has certain capabilities that INW(small λ) lacks, and in Section 5,
we also show that INW(small λ) has certain capabilities that INW⊕t(large λ) lacks. Finally, in Section 7, we
conclude with some suggested open problems.

2 Preliminaries

2.1 Read-once evaluation programs (ROEPs)

Ultimately, the model of computation we are interested in is the standard-order ROBP model (Definition 1.2).
At intermediate stages of our argument, we will use a slight generalization of the ROBP model called the
“read-once evaluation program” (ROEP) model, introduced by Braveman, Rao, Raz, and Yehudayoff [BRRY14].
An ROEP is simply an ROBP with fractional output values:

Definition 2.1 (Standard-order ROEP [BRRY14]). A width-w length-n standard-order read-once evaluation
program (ROEP) is defined just like a width-w length-n standard-order ROBP (Definition 1.2), except
that the output values qv are permitted to be any values in [0, 1]. Thus, the program computes a function
f : {0, 1}n → [0, 1]. We say that a distribution X over {0, 1}n fools f with error ε if |E[f(X)]− E[f]| ≤ ε.

2.2 Graphs

For any graph H, we use V (H) to denote the vertex set of H. As discussed in the introduction, we use the
notation H[x, y] to denote the y-th neighbor of the vertex x in the graph H. This is well-defined provided
that H is a labeled graph, defined as follows.

Definition 2.2 (Graph labeling). Let H = (V,E) be a D-regular directed multigraph. We say that H
is labeled if for every vertex x, the outgoing edges are labeled 1, . . . , D. In this case, we write H[x, y] to
denote the vertex reached from x by traversing the outgoing edge labeled y. If H is a D-regular undirected
multigraph, then we identify H with the symmetric digraph obtained by replacing each undirected edge
{x, x′} with two directed edges: (x, x′) and (x′, x). If we say that H is “labeled,” we allow the two edges
(x, x′) and (x′, x) to have distinct labels.

We write KR to denote the complete graph on R vertices without self-loops, and we write JR to denote
the complete graph on R vertices with self-loops. We write J or J∗ if the number of vertices is clear from
context. Several occurrences of “J∗” in a single equation might represent complete graphs on several different
numbers of vertices.

If H is a D-regular undirected multigraph on R vertices, its transition probability matrix is the matrix
M ∈ [0, 1]R×R defined by letting Mu,v = e(u,v)

D , where e(u, v) denotes the number of edges from u to v. We
often abuse notation by identifying a graph H with its transition probability matrix. For example, we use JR
to denote the R×R matrix in which every entry is equal to 1/R.

2.3 Spectral expansion

For a matrix M ∈ RR×R, we use the notation ∥M∥op to denote the operator norm of M , i.e.,

∥M∥op = max
x∈RR

∥x∥2=1

∥xM∥2.

Definition 2.3 (Expansion parameter). Let H be a regular undirected multigraph. The expansion parameter
λ(H) is defined as

λ(H) = ∥H − J∥op.

Equivalently, one can define λ(H) to be the second-largest eigenvalue of H in absolute value.

9

For example, λ(J) = 0. The complete graph without self-loops also has quite a good expansion parameter:

Fact 2.4 (Expansion parameter of the complete graph without self-loops). For every R ∈ N, we have
λ(KR) = 1/(R− 1).

Proof sketch. The following R vectors are linearly independent eigenvectors of KR:

• The all-ones vector, which has eigenvalue 1;

• Vectors of the form (1, 0, 0, . . . , 0,−1, 0, 0, . . . , 0), each of which has eigenvalue −1/(R− 1).

Cayley graphs are a more interesting class of expanders. The general definition is as follows.

Definition 2.5 (Cayley graph). Let V be a group, let R be a finite set, and let G : R → V be a function.
The Cayley graph Cay(V,G) is a labeled |R|-regular directed multigraph on the vertex set V defined by

Cay(V,G)[x, y] = x ·G(y), (2)

where · is the group operation.

We will only use this definition in the special case that V = Fn
2 , so Eq. (2) becomes

Cay(Fn
2 , G)[x, y] = x⊕G(y).

It is well-known that if G is a small-bias generator, then Cay(Fn
2 , G) is an expander. We include the proof

for completeness’ sake.

Lemma 2.6 (Expanders from small-bias generators). Let n ∈ N and let G : R → Fn
2 be a λ-biased generator.

Then λ(Cay(Fn
2 , G)) ≤ λ.

Proof. Let A be the 2n × 2n transition probability matrix of Cay(Fn
2 , G). Then

A =
1

|R|
∑
y∈R

A(y),

where A
(y)
x,x′ = 1 if x′ = x⊕G(y) and 0 otherwise.

The 2n eigenvectors of A(y) are the character functions χa (viewed as vectors indexed by Fn
2). Indeed,

(χaA
(y))x =

∑
x′

χa(x
′)A

(y)
x′,x = χa(x⊕G(y)) = χa(x) · χa(G(y)),

because the only x′ for which A(y)(x′, x) is nonzero is x′ = x⊕G(y). Hence χa is an eigenvector of A(y) with
eigenvalue χa(G(y)), and by linearity χa is an eigenvector of A with eigenvalue

λa =
1

|R|
∑
y∈R

χa(G(y)) = Ey∈R[χa(G(y))].

Then we have all 2n eigenvalues of A. When a = 0, one finds λ0 = 1, and so

λ
(
Cay(Fn

2 , G)
)
= max

a̸=0

∣∣Ey∈R[χa(G(y))]
∣∣.

Since G is an λ-biased generator,
∣∣Ey∼R

[
χa(G(y))

]∣∣ ≤ λ, for all nonzero a ∈ Fn
2 .

10

2.4 Lower bound on the degree of expander graphs

To prove our seed length lower bounds, we rely on the following standard fact. We include a proof for
completeness’ sake.

Proposition 2.7 (Expander graph degree lower bound). Let H be an undirected D-regular graph on R
vertices. Then

λ(H) ≥
√

1

D
· R−D

R− 1
.

In particular, D ≥ min{1/(2 · λ(H)2), (R+ 1)/2}, and if D = 1, then λ(H) = 1.

Proof. Let H2 denote the square of the transition probability matrix of H. Every entry on the diagonal of
H2 is at least 1/D, because H is undirected. Therefore, Tr(H2) ≥ R/D. On the other hand,

Tr(H2) =

R∑
i=1

λ2
i ≤ 1 + (R− 1) · λ(H)2,

where λi’s are the eigenvalues of H, such that 1 = λ2
1 ≥ λ2

2 ≥ · · · ≥ λ2
R and λ(H) = λ2. Combining these

together, we get

λ(H) ≥
√

1

D
· R−D

R− 1
.

It immediately follows that if D = 1, then λ(H) = 1. Finally, if D < min{1/(2 · λ(H)2), (R+ 1)/2}, then

λ(H)2 ≥ 1

D
· R−D

R− 1
> 2 · λ(H)2 ·

R− R+1
2

R− 1
= λ(H)2,

which is a contradiction.

2.5 Tensor products

Definition 2.8 (Tensor product of graphs). Given a pair of labeled graphs H1, H2 on R1, R2 vertices with
degrees D1, D2 respectively, define the tensor product H1 ⊗H2 to be the (D1 ·D2)-regular graph on R1 ·R2

vertices with neighbor relation (H1 ⊗H2)[(u1, u2), (e1, e2)] = (H1[u1, e1], H2[u2, e2]).

Proposition 2.9 (Spectral expansion of a tensor product). Let H1, H2 be undirected regular graphs. Then
λ(H1 ⊗H2) = max(λ(H1), λ(H2)).

We also use the notation M ⊗M ′ to denote the tensor product of matrices, aka the Kronecker product.

Fact 2.10 (Operator norm of tensor product). For any two matrices M,M ′, we have

∥M ⊗M ′∥op = ∥M∥op · ∥M ′∥op.

2.6 Expander mixing lemma

We will use the following weak version of the famous “expander mixing lemma.”

Lemma 2.11 (Expander mixing lemma). Let H = (V,E) be a regular undirected multigraph. Let f, g : V →
{0, 1}. Sample a uniform random vertex X, then sample a uniform random neighbor Y of X. Then

|E[f(X) · g(Y)]− E[f] · E[g]| ≤ λ(H).

For a proof, see, e.g., Vadhan’s pseudorandomness survey [Vad12].

11

2.7 INW generators

We now present a more precise definition of the INW generator, in case the informal definition in the
introduction was not sufficiently clear.

Definition 2.12 (Permissible families of graphs). Let n be a power of two, let D1, . . . , Dlogn ∈ N, let Hi be

a labeled Di-regular undirected multigraph for every i ∈ [log n], and let H⃗ = (H1, . . . ,Hlogn). We say that

H⃗ is permissible if V (H1) = [2] and V (Hi+1) = V (Hi)× [Di] for every i ∈ [log n− 1], where V (H) denotes
the vertex set of H.

More generally, suppose H is a t× log n matrix of labeled regular undirected multigraphs:

H =

H1,1 . . . H1,logn
...

. . .
...

Ht,1 . . . Ht,logn

 .

We say that H is permissible if each row is permissible.

Definition 2.13 (INW generators). Let H⃗ = (H1, . . . ,Hlogn) be a permissible family of labeled regular
undirected multigraphs. We define INWH⃗ : V (Hlogn) → {0, 1}n recursively by the formulas

INW()(x) = x

INW(H1,,̇Hj)(x, y) = (INW(H1,...,Hj−1)(x), INW(H1,...,Hj−1)(Hj [x, y])).

More generally, let H be a t× log n matrix of labeled regular undirected multigraphs, say

H =

H1,1 . . . H1,logn
...

. . .
...

Ht,1 . . . Ht,logn

 ,

and assume that H is permissible. We define INW⊕t
H : V (H1,logn)× · · ·×V (Ht,logn) → {0, 1}n by the formula

INW⊕t
H (x1, . . . , xt) = INWH1(x1)⊕ · · · ⊕ INWHt(xt),

where H1, . . . ,Ht are the rows of H.
For a vector λ⃗ ∈ [0, 1]logn, we define

INW(λ⃗) =
{
INWH⃗ : H⃗ is a 1× log n permissible family and λ(Hj) ≤ λj for all j

}
.

When n is clear from context, we use INW(λ) as a shorthand for the case that λj = λ for every j. Similarly,
for a matrix Λ ∈ [0, 1]t×logn, we define

INW⊕t(Λ) = {INWH : H is a t× log n permissible family and λ(Hi,j) ≤ Λi,j for all i, j} .

When n is clear from context, we use INW⊕t(λ) as a shorthand for the case that Λi,j = λ for every i, j.

2.8 Binary linear code

In this section we briefly review the basic concepts of the coding theory.

Definition 2.14 (Binary Linear Code). A binary linear code C of block length m is a subspace of Fm
2 , where

F2 is the field with two elements. The minimum distance d of C is the smallest Hamming weight among all
nonzero codewords in C.

12

Definition 2.15 (Binary Entropy Function). For 0 ≤ δ ≤ 1, the binary entropy function is defined as

H(δ) = −δ log2(δ)− (1− δ) log2(1− δ),

with the convention that 0 log2 0 = 0.

Theorem 2.16 (GV bound for binary linear codes). For every m, k ∈ N such that k ≤ m/2, there exists a
binary linear code of block length m with minimum distance k+1 and dimension at least ⌊(1−H(k/m)) ·m⌋.

Since Theorem 2.16 is perhaps not the most common formulation of the GV bound, we include a proof
for completeness’ sake in Appendix A.

Corollary 2.17. For every δ ∈ (0, 1/2), there is a subspace C⊥ ⊆ Fm
2 of dimension at most ⌈H(δ) ·m⌉ such

that the uniform distribution over C⊥ is (δm)-wise uniform distribution, which means every ⌊δm⌋ bits of this
distribution are uniform over {0, 1}⌊δm⌋.

Proof. Let k = ⌊δm⌋. By Theorem 2.16, there exists a code C with minimum distance k + 1 and dimension
at least ⌊(1−H(k/m)) ·m⌋. It is well-known that in general, if a linear code has minimum distance k + 1,
then the uniform distribution over the dual code is k-wise uniform. (For a proof, see, e.g., Hatami and Hoza’s
survey [HH24].) Finally, we have

dim(C⊥) = m− dim(C) ≤ m− ⌊(1−H(k/m)) ·m⌋
= ⌈m− (1−H(k/m)) ·m⌉
= ⌈H(k/m) ·m⌉
≤ ⌈H(δ) ·m⌉.

Remark 2.18. Guruswami [Shp09] explicitly constructs a family of constant-rate binary linear codes whose
primal and dual relative minimum distance are both constant with efficient decoding and encoding procedures.
For our purposes, the existence of such family of codes is enough.

3 Proof that sums of INW generators fool constant-width ROBPs

In this section, we present the proof of Theorem 1.7, which says that INW⊕t(Λ) fools width-w programs

with error nlog(w+1) ·
∏t

i=1

∑logn
j=1 Λi,j . The proof is based on the notion of a robust PRG. Roughly speaking,

a robust PRG is a multi-seed PRG that still works even if some seeds are fixed to arbitrary values, with an
error bound that depends on the number of random seeds. The precise definition is as follows.

Definition 3.1 (Robust PRG). Let R1, . . . ,Rt be finite sets, let G : R1 × · · · ×Rt → {0, 1}n, let W ≥ 0, let
ε⃗ = (ε1, . . . , εt) ∈ (0, 1)t, and let f : {0, 1}n → R. We say that G robustly (W, ε⃗)-fools f if the following holds.
For every A ⊆ [t] and every x[t]\A ∈

∏
i∈[t]\ARi, if we sample xA ∈

∏
i∈ARi uniformly at random, then∣∣∣∣ExA

[f(G(x1, . . . , xt))]− E[f]
∣∣∣∣ ≤ W ·

∏
i∈A

εi.

For example, if R1 = · · · = Rt = {0, 1} and G(x1, . . . , xt) = x1 ⊕ · · · ⊕ xt, then G robustly (1, 0⃗)-fools
every function f : {0, 1} → [0, 1]. This example will serve as the base case of our analysis of INW⊕t. The
inductive step will be based on the following lemma, which shows how to double the output length of a
robust PRG fooling ROEPs.

Lemma 3.2 (Inductive step in the analysis of INW⊕t). Let n,w ∈ N where n is even. Let R1, . . . ,Rt be finite
sets. Let G : R1 × · · · × Rt → {0, 1}n/2. Let W ≥ 0 and ε⃗ ∈ (0, 1)t, and assume that G robustly (W, ε⃗)-fools
all width-w length-(n/2) standard-order ROEPs. For each i ∈ [t], let H(i) be a Di-regular multigraph on the
vertex set Ri. Let λ⃗ = (λ(H(1)), . . . , λ(H(t))). Define G′ : (R1 × [D1])× · · · × (Rt × [Dt]) → {0, 1}n by the
formula

G′((x1, y1), . . . , (xt, yt)) = (G(x1, . . . , xt), G(H(1)[x1, y1], . . . ,H
(t)[xt, yt])).

Then G′ robustly (W · (w + 1), ε⃗+ λ⃗)-fools all width-w length-n standard-order ROEPs.

13

Proof. Let f : {0, 1}n → [0, 1] be a width-w length-n standard-order ROEP. Fix any set A ⊆ [t]. For every
i ∈ [t] \A, let xi, x′i ∈ Ri be arbitrary fixed values. We also write Xi = xi and X ′

i = x′i for every i ∈ [t] \A.
Meanwhile, for every i ∈ A, sample Xi ∈ Ri and Yi ∈ [Di] independently and uniformly at random, and let
X ′

i = H(i)[Xi, Yi]. Let X = (X1, . . . , Xt) and X ′ = (X ′
1, . . . , X

′
t). Our goal is to show that (G(X), G(X ′))

fools f with error W · (w + 1) ·
∏

i∈R(εi + λi).

For each vertex u in the middle layer of f , define f→u : {0, 1}n/2 → {0, 1} by letting f→u(z) indicate
whether f reaches u when it reads z. Furthermore, define fu→ : {0, 1}n/2 → [0, 1] by letting fu→(z) be
the label of the vertex reached in the final layer if we start at u and read z. Let µu→ = E[fu→] and
fu→ = fu→ − µu→. Then for any z, z′ ∈ {0, 1}n/2, we have

f(z, z′) =
∑
u∈[w]

f→u(z) · fu→(z′) =

∑
u∈[w]

f→u(z) · fu→(z′)

+

∑
u∈[w]

f→u(z) · µu→

 .

The second sum above is computable by a width-w standard-order ROEP fleft : {0, 1}n/2 → [0, 1] that
ignores the second half of its input. By assumption, (G(X), G(X ′)) fools fleft with error W ·

∏
i∈R εi.

Now consider a single term in the first sum, f→u(z) · fu→(z′). Under the uniform distribution, we have

E[f→u · fu→] = E[f→u] · E[fu→] = E[f→u] · (µu→ − µu→) = 0.

Now we analyze the expectation under the pseudorandom distribution (G(X), G(X ′)). We begin by writing
the expectation as a sum. For convenience, for any set S ⊆ [t], let us use the notation RS to denote the
Cartesian product

∏
i∈S Ri. Furthermore, let us identify the graph H(i) with its transition probability matrix.

Then we have

E[f→u(G(X)) · fu→(G(X ′))] =
∑

xA,x′
A∈RA

Pr[X = x and X ′ = x′] · f→u(G(x)) · fu→(G(x′))

=
∑

xA,x′
A∈RA

(∏
i∈A

Hxi,x′
i

|Ri|

)
· f→u(G(x)) · fu→(G(x′)),

where the notation x denotes the vector x = (x1, . . . , xt), and similarly x′ = (x′1, . . . , x
′
t). Next, we use

the decomposition H(i) = J|Ri| + E(i), where J|Ri| has 1/|Ri| in every entry and E(i) is some matrix with
operator norm λi. Applying this decomposition entrywise, we get

E[f→u(G(X)) · fu→(G(X ′))] =
∑

xA,x′
A∈RA

∏
i∈A

 1

|Ri|2
+

E
(i)
xi,x′

i

|Ri|

 · f→u(G(x)) · fu→(G(x′))

=
∑

A=S⊔T

∑
xT ,x′

T∈RT

∏
i∈T

E
(i)
xi,x′

i

|Ri|

 E
xS ,x

′
S∈RS

[f→u(G(x)) · fu→(G(x′))],

where the outer sum is over all partitions of A into two disjoint sets, S and T . The product
∏

i∈T E
(i)
xi,x′

i
is

exactly the (xT , x
′
T) entry in the tensor product matrix

⊗
i∈T E(i). Meanwhile, the expectation

E
xS ,x

′
S∈RS

[f→u(G(x)) · fu→(G(x′))]

splits as a product of expectations. Thus, we get

E[f→u(G(X))·fu→(G(X ′))] =
∑

A=S⊔T

1

|RT |
·
∑

xT ,x′
T∈RT

(⊗
i∈T

E(i)

)
xT ,x′

T

· E
xS∈RS

[f→u(G(x))]· E
x′
S∈RS

[fu→(G(x′))].

14

We can think of the first expectation, ExS∈RS
[f→u(G(x))], as a single entry axT in a long vector a ∈ RRT .

Similarly, we think of the second expectation, ExS∈RS
[fu→(G(x′))], as a single entry bx′

T
in a long vector

b ∈ RRT . In this way, the inner sum above becomes a vector-matrix-vector product:

|E[f→u(G(X)) · fu→(G(X ′))]| =

∣∣∣∣∣ ∑
A=S⊔T

1

|RT |
· aT · E⊗T · b

∣∣∣∣∣
≤

∑
A=S⊔T

1

|RT |
· ∥a∥2 ·

∥∥∥∥∥⊗
i∈T

E(i)

∥∥∥∥∥
op

· ∥b∥2

≤
∑

A=S⊔T
∥a∥∞ · ∥b∥∞ ·

∏
i∈T

∥E(i)∥op

=
∑

A=S⊔T
∥a∥∞ · ∥b∥∞ ·

∏
i∈T

λi.

The function f→u is {0, 1}-valued, so ∥a∥∞ ≤ 1. Meanwhile, for any fixing of x′T ∈ RT , the entry bx′
T
is

precisely the error when we sample x′S ∈ RS uniformly at random and try to use G(x′) to fool fu→, a width-w
length-(n/2) standard-order ROEP. By assumption, ∥b∥∞ ≤ W ·

∏
i∈S εi. Therefore,

|E[f→u(G(X)) · fu→(G(X ′))]| ≤ W ·
∑

A=S⊔T

(∏
i∈S

εi

)
·

(∏
i∈T

λi

)
= A ·

∏
i∈A

(εi + λi).

Consequently, summing up all the errors, we get

|E[f(G(X), G(X ′))]− E[f]| ≤

∑
u∈[w]

W ·
∏
i∈A

(εi + λi)

+W ·
∏
i∈A

εi ≤ W · (w + 1) ·
∏
i∈A

(εi + λi).

Proof of Theorem 1.7. Let Glogn be any PRG in the family INW⊕t(Λ). We will prove by induction on
n that Glogn robustly (W, ε⃗)-fools width-w length-n standard-order ROEPs, where W = (w + 1)logn and

εi =
∑logn

j=1 Λi,j . For the base case, if n = 1, then there is exactly one PRG in the family INW⊕t(Λ), namely

G0 : {0, 1}t → {0, 1} is given by G0(x) = x1 ⊕ · · · ⊕ xt. This PRG indeed robustly (1, 0⃗)-fools all functions
f : {0, 1} → [0, 1]. Now, for the inductive step, suppose n > 1. By definition of INW⊕t(Λ), the PRG Glogn has

the form Glogn(a1, . . . , at) = G
(1)
logn(a1)⊕ · · · ⊕G

(t)
logn(at), where G

(i)
logn ∈ INW(Λi) for every i. By definition

of INW(Λi), the seed ai is a pair (xi, yi), and the generator G
(i)
logn has the form

G
(i)
logn(xi, yi) = (G

(i)
logn−1(xi), G

(i)
logn−1(H

(i)[xi, yi]))

for some G
(i)
logn−1 ∈ INW((Λi,1, . . . ,Λi,logn−1)) and some Λi,logn-spectral expander H(i). Define a PRG

Glogn−1 by the rule

Glogn−1(x1, . . . , xt) = G
(1)
logn−1(x1)⊕ · · · ⊕G

(t)
logn−1(xt).

Then Glogn−1 ∈ INW⊕t(Λ′), where Λ′ consists of all but the last column of Λ. By induction, Glogn−1 robustly

((w+ 1)logn−1, α⃗)-fools width-w length-n standard-order ROEPs, where αi =
∑logn−1

j=1 Λi,j . Working through
the definitions, we see that the PRG Glogn can be written as

Glogn((x1, y1), . . . , (xt, yt)) = (Glogn−1(x1, . . . , xt), Glogn−1(H
(1)[x1, y1], . . . ,H

(t)[xt, yt])).

Applying Lemma 3.2 completes the inductive step.
Finally, since Glogn robustly (W, ε⃗)-fools width-w length-n standard-order ROEPs, it follows that Glogn

fools width-w length-n standard-order ROBPs with error ε, where

ε = W ·
t∏

i=1

εi = nlog(w+1) ·
t∏

i=1

logn∑
j=1

Λi,j .

15

4 Seed length lower bound for fooling ROBPs

In this section, we prove Theorem 1.8, which states that no matter how many (or how few) copies of the
INW generator we XOR together, and regardless of how we set the expansion parameters, if the resulting
PRG fools width-3 programs, then the seed length is inevitably Ω(log2 n).

4.1 Sums of small-bias distributions

We begin by analyzing a family of a small-bias distributions introduced by Lee and Viola [LV17]. This
construction guarantees that summing independent samples from these distributions does not substantially
increase the overall number of distinct strings.

Definition 4.1 (Sum of sets). For S, T ⊆ {0, 1}m, S + T = {s⊕ t | s ∈ S, t ∈ T}.

Lemma 4.2 (Small-bias distributions with a small sum set). For every m, t ∈ N and every ε1, . . . , εt ∈ (0, 1]
such that ⌈ln(1/ε1)⌉+ · · ·+ ⌈ln(1/εt)⌉ < 1

625 ·m, there exist distributions D1, . . . , Dt over {0, 1}m such that
Di is εi-biased for every i, and

| Supp(D1) + · · ·+ Supp(Dt)| < 2 · 2m/2.

Furthermore, the probability mass function of each Di only takes on rational values.

Proof. For each i ∈ [t], we construct Di by taking the bitwise XOR X ⊕ Yi, where X is distributed uniformly
over C⊥ which is (m25)-wise uniform constructed by Corollary 2.17, and Yi is an independent “noise vector”
constructed as follows. Repeat the following process ri times independently, where ri = ⌈25 ln (1/εi)⌉: choose
a position uniformly at random from [m], and set it to a uniform bit. The remaining bits of Yi are zero.
Note that X is uniform over a subspace of Fm

2 and the probability of getting a particular noise vector y is a
multiple of (1/m)ri , which is a rational number.

First we prove that each Di is εi-biased. For any character function χS with |S| < m
25 , since X and Yi are

independent and X is (m25)-wise uniform, χS is perfectly food by Di. Next, consider any character function
χS , where |S| ≥ m

25 . In this case, the bias is nonzero only if none of the elements in S are selected by the
random noise Yi. So the bias is at most

(1− |S|/m)ri ≤ exp(−ri · |S|/m) ≤ εi.

Thus, we have shown that each Di is εi-biased.
By the closure property of linear subspaces,

|Supp(D1) + · · ·+ Supp(Dt)| = |Supp(X) + Supp(Y1) + · · ·+ Supp(X) + Supp(Yt)|
= |C⊥ + · · ·+ C⊥ + Supp(Y1) + · · ·+ Supp(Yt)|
= |C⊥ + Supp(Y1) + · · ·+ Supp(Yt)|.

The set C⊥ + Supp(Y1) + · · ·+ Supp(Yt) is precisely the set of all binary strings within Hamming distance at
most r1 + · · ·+ rt ≤ ⌈25 ln(1/ε1)⌉+ . . .+ ⌈25 ln(1/εt)⌉ < m

25 from C⊥. Therefore,

|X + Supp(Y1) + · · ·+ Supp(Yt)| ≤ |C⊥| ·
(

m

≤ m/25

)
≤ 2⌈H(1

25
)·m⌉ · 2H(1

25
)·m

< 2 · 2m/2.

Remark 4.3 (The benefit of noisy codewords). In the proof of Lemma 4.2, we use small-bias distributions
based on noisy codewords [LV17]. A more straightforward approach for minimizing |Supp(D1)+· · ·+Supp(Dt)|
would be to simply make | Supp(Di)| as small as possible and then use the trivial bound

| Supp(D1) + · · ·+ Supp(Dt)| ≤
t∏

i=1

| Supp(Di)|.

16

This approach is too weak to prove Lemma 4.2. Indeed, every small-bias distribution Di satisfies |Supp(Di)| ≥
Ω(m) [AGHP92], so we inevitably have

∏t
i=1 | Supp(Di)| ≥ Ω(m)t, so the bound is trivial when t ≥

1.01 ·m/ logm. In contrast, Lemma 4.2 is meaningful even when t = Θ(m).

4.2 Constructing an INW⊕t generator that does not fool ROBPs

Recall that the seed length of INW⊕t
H is

∑
i∈[t],j∈[logn] log(deg(Hi,j)). Our goal is to show that if every PRG

in INW⊕t(Λ) fools width-3 programs, then every PRG in INW⊕t(Λ) has seed length Ω(log2 n). Indeed, we
will show that for each PRG in INW⊕t(Λ), the seed length grows by Ω(log n) in each of Ω(log n) of the
rounds of the INW recursion. The lemma below makes this precise, formulated in the contrapositive.

Lemma 4.4 (One-round seed length lower bound for fooling width-3 programs). Let n be a sufficiently
large power of two, let t ∈ N, let Λ ∈ [0, 1]t×logn, and let j∗ ∈ [log logn, 14 log n]. Assume that there exists
a t× log n permissible family of labeled regular undirected multigraphs H = {Hi,j} such that λ(Hi,j) ≤ Λi,j

for every i, j and log(deg(H1,j∗)) + · · ·+ log(deg(Ht,j∗)) <
1

20000 · log n. Then there exists another t× log n
permissible family of labeled regular undirected multigraphs H′ = {H ′

i,j} such that λ(H ′
i,j) ≤ Λi,j for every

i, j, along with a length-n, width-3, standard-order ROBP B such that Pr
[
B(U{0,1}n) = 1

]
≥ 1− exp(−n1/4),

but B(INW⊕t
H′(x)) = 0 for every seed x.

Proof. We first partition [t] based on whether deg(Hi,j∗) ≥ 1/(2Λ2
i,j∗). Let T1 ⊆ [t] be the indices such that

deg(Hi,j∗) ≥ 1/(2Λ2
i,j∗) and let T2 = [t] \ T1, which means for all i ∈ T2, deg(Hi,j∗) ≥ (|Hi,j∗ | + 1)/2 by

Proposition 2.7. Without loss of generality, we assume that T1 = [t1] and T2 = [t] \ [t1]. Note that if Λi,j∗ = 0
for some i ∈ [t], then i ∈ T2.

Let M be a power of two satisfying n1/8 ≤ M < n1/4, and let m = logM . Now we can construct a new
family of graphs H′. For indices i ∈ T1, we use Lemma 4.2 to construct a family of distributions Di, i ∈ T1

over {0, 1}m such that each Di is Λi,j∗-biased. By Proposition 2.7, we know that for any graph Hi,j∗ such
that deg(Hi,j∗) = 1, we have λ(Hi,j∗) = Λi,j∗ = 1. Thus,∑

i∈T1

⌈log(1/Λi,j∗)⌉ =
∑

i∈T1,Λi,j∗ ̸=1

⌈log(1/Λi,j∗)⌉+
∑

i∈T1,Λi,j∗=1

⌈log(1/Λi,j∗)⌉

≤
∑

i∈T1,Λi,j∗ ̸=1

⌈log(2 · deg(Hi,j∗))⌉+ 0

≤ 2 ·
∑
i∈[t]

log(deg(Hi,j∗)) ≤
1

10000
· log n <

1

1000
·m,

where we used the fact that if Λi,j∗ ̸= 1, then deg(Hi,j∗) ≥ 2. Let Zi = Cay(Fm
2 ,SBi), where SBi : Ki → {0, 1}m

is some generator such that SBi(UKi) = Di. (Such a generator exists, because all probabilities under Di are
rational numbers.) This graph satisfies λ(Zi) ≤ Λi,j∗ by Lemma 2.6, and each vertex in Zi has |Supp(Di)|
distinct neighbors. Let q = 2j∗−1 and Q = 2q, and we define

Wi = Zi ⊗ JQ/M .

Recall that H′
1, . . . ,H′

t denote the rows of H′. For each i ∈ T1, let

H′
i = [J2, . . . , J22j∗−2 ,Wi, J∗, . . . , J∗],

that is, for all indices j′ ̸= j∗, H
′
i,j′ is the complete graph of appropriate size, and in j∗-th index, we use our

Wi constructed before.
For each i′ ∈ T2, let

H′
i′ = [Hi′,1, Hi′,2, . . . ,Hi′,j∗−1, Hi′,j∗ , J∗, . . . J∗],

i.e. the graphs up to j∗ are exactly same as the corresponding graphs in H, and after j∗, we use the complete
graphs of appropriate size. By combining H′

i, i ∈ T1 and H′
i′ , i

′ ∈ T2 accordingly, we get a new family graphs
H′. Since H is a family of graphs that satisfy the constraint Λ, so is H′.

17

By the definition of INW⊕t
H′ ,

INW⊕t
H′(x

0
1, . . . , x

0
t) = INWH′

1
(x01)⊕ · · · ⊕ INWH′

t
(x0t)

= G
(1)
logn(x

0
1)⊕ · · · ⊕G

(t)
logn(x

0
t)

= (G
(1)
logn−1(x

′
1), G

(1)
logn−1(H

′
1,logn[x

′
1, y

′
1]))⊕ · · · ⊕ (G

(t)
logn−1(x

′
t), G

(t)
logn−1(H

′
t,logn[x

′
t, y

′
t])),

where x′i and y′i are the substrings of xi of appropriate length, and each G
(i)
logn as a INW generator in INW(Λi),

so that G
(i)
j , j ∈ [log n], is defined recursively. By recursively expanding these generators until the j∗-th

round, where we can express the output of INW⊕t
H′ as n/2j∗ independent copies, as H′

i,j′ are complete graphs
for i ∈ [t] and j∗ < j′ ≤ log n, of the following form

G
(1)
j∗

(x1, y1)⊕ · · · ⊕G
(t)
j∗
(xt, yt)

=
(
G

(1)
j∗−1(x1), G

(1)
j∗−1(H

′
1,j∗ [x1, y1])

)
⊕ · · · ⊕

(
G

(t)
j∗−1(xt), G

(t)
j∗−1(H

′
1,j∗ [xt, yt])

)
=
(
x1 ⊕ · · · ⊕ xt1 ⊕G

(t1+1)
j∗−1 (xt1+1)⊕ · · · ⊕G

(t)
j∗−1(xt),

H ′
1,j∗ [x1, y1]⊕ · · · ⊕H ′

t1,j∗ [xt1 , yt1]⊕G
(t1+1)
j∗−1 (H ′

t1+1,j∗ [xt1+1, yt1+1])⊕ · · · ⊕G
(t)
j∗−1(H

′
t,j∗ [xt, yt])

)
,

as G
(i)
j∗−1 is the identity function for i ∈ T1, where xi, yi are the corresponding input strings.

Let R′
i be the set of all possible G

(i)
j∗−1(xi)⊕G

(i)
j∗−1(H

′
i,j∗ [xi, yi]) where we allow xi to range over all vertices

and we allow yi to range over all edge labels, and let Ri = {x1,...,m|x ∈ R′
i}, which is the set of first m bits

of strings in R′
i. In the following, we are going to show that |

∑t
i=1Ri| < 2m, hence there is at least one

v∗ ∈ {0, 1}m such that v∗ /∈
∑t

i=1Ri. Our approach is to bound∣∣∣∣∣
t∑

i=1

Ri

∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
i∈T1

Ri

∣∣∣∣∣∣ ·
∏
i∈T2

|Ri|.

We will bound |
∑

i∈T1
Ri| and

∏
i∈T2

|Ri| separately.
For each i ∈ T1, let x

(1)
i ∈ {0, 1}m be the first m bits of xi, and x

(2)
i ∈ {0, 1}q−m to be the substring of xi

after x
(1)
i , so that xi = (x

(1)
i , x

(2)
i). For yi, since Wi = Zi ⊗ J , we have yi = (y

(1)
i , y

(2)
i) where y

(1)
i ∈ Ki and

y
(2)
i ∈ {0, 1}q−m. Thus, for i ∈ T1, we have

xi ⊕H ′
i,j∗ [xi, yi] = (x

(1)
i , x

(2)
i)⊕H ′

i,j∗ [(x
(1)
i , x

(2)
i), (y

(1)
i , y

(2)
i)]

= (x
(1)
i , x

(2)
i)⊕Wi[(x

(1)
i , x

(2)
i), (y

(1)
i , y

(2)
i)]

= (x
(1)
i , x

(2)
i)⊕ (Zi[x

(1)
i , y

(1)
i], JQ/M [x

(2)
i , y

(2)
i])

= (x
(1)
i , x

(2)
i)⊕ (Zi[x

(1)
i , y

(1)
i], y

(2)
i).

By our construction of Zi, for any choice of x
(1)
i , y

(1)
i , we have x

(1)
i ⊕ Zi[x

(1)
i , y

(1)
i] ∈ Supp(Di), and⊕

i∈T1

x
(1)
i ⊕ Zi[x

(1)
i , y

(1)
i] ∈

∑
i∈T1

Supp(Di).

Therefore, by Lemma 4.2, we have ∣∣∣∣∣∣
∑
i∈T1

Ri

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
i∈T1

Supp(Di)

∣∣∣∣∣∣ ≤ 2 · 2m/2.

18

For i ∈ T2, we have

G
(i)
j∗−1(xi)⊕G

(i)
j∗−1(H

′
i,j∗ [xi, yi]) = G

(i)
j∗−1(xi)⊕G

(i)
j∗−1(Hi,j∗ [xi, yi]).

For i ∈ T2, deg(Hi,j∗) ≥
|Hi,j∗ |+1

2 and xi is a vertex label in Hi,j∗ ,

|Ri| ≤ |Hi,j∗ | · deg(Hi,j∗) ≤ 2(deg(Hi,j∗)− 1) · deg(Hi,j∗) ≤ 2 deg(Hi,j∗)
2.

We know that log(deg(H1,j∗)) + . . .+ log(deg(Ht,j∗)) <
1

20000 · log n < 0.001 · log n. By Proposition 2.7, for
any undirected graph h with degree 1, we know λ(h) = 1, so that for any i ∈ T2, deg(Hi,j∗) ≥ 2, which means
|T2| < 0.001 · log n. Therefore,∏

i∈T2

|Ri| ≤ 2|T2| ·
∏
i∈T2

deg(Hi,j∗)
2 ≤ 20.001·logn · n0.01 ≤ n0.02 ≤ 20.2m.

By the bounds above, the number of possible choices for v is at most∣∣∣∣∣∣
∑
i∈T1

Ri

∣∣∣∣∣∣ ·
∏
i∈T2

|Ri| ≤ 2 · 2m/2+0.2m < 2m.

Therefore, there is at least one v∗ ∈ {0, 1}m such that v∗ /∈
∑t

i=1Ri.
Encoding this missing element to a width-3 branching program B computing the function f : {0, 1}n →

{0, 1} as

f(x) =

n/2j∗−1∨
i=0

(x2j∗ ·i+1...2j∗ ·i+m = 0m ∧ x2j∗ ·i+q+1...2j∗ ·i+q+m = v∗),

we know that B(INW⊕t
H′(x)) = 0 for any input seed x. However, for a truly random input satisfies each clause

with probability 2−2m ≥ 1/
√
n, and since there are n/2j∗ ≥ n3/4 such clauses, the acceptance probability is

Pr[B(U{0,1}n) = 1] = 1− Pr[B(U{0,1}n) = 0] ≥ 1− (1− 1/
√
n)n

3/4 ≥ 1− exp(−n1/4).

We can then prove Theorem 1.8.

Theorem 4.5 (Restatement of Theorem 1.8). Let n be a power of two, let t ∈ N, and let Λ ∈ [0, 1]t×logn. If
every PRG in the family INW⊕t(Λ) fools width-3 standard-order ROBPs with error 0.99, then every PRG in
the family INW⊕t(Λ) has seed length Ω(log2 n).

Proof. For every t ∈ N, Lemma 4.4 implies that for every PRG in the family INW⊕t(Λ) and for each
j ∈ [log log n, log n],

log(deg(H1,j)) + · · ·+ log(deg(Ht,j)) ≥
1

20000
· log n.

Consequently, the overall seed length is at least∑
j∈[log logn,logn]

(log(deg(H1,j)) + · · ·+ log(deg(Ht,j))) ≥
∑

j∈[log logn,logn]

1

20000
· log n = Ω(log2 n).

5 A case where XORing is cheaper than using heavy-duty expanders

In this section, we give the proof of the Theorem 1.9, which shows that INW⊕2 is indeed strictly better
than INW at fooling certain tests, namely quadratic polynomials over F2. As discussed in Section 1.6,
the proof that INW⊕2 does a good job of fooling such polynomials is an immediate consequence of prior
work [KNP11; De11; Ste12; BV10a; Lov09; Vio09]. The main content of the theorem is the fact that

19

INW alone does a bad job of fooling such polynomials. The proof is based on the inner product function
IP2m : {0, 1}m × {0, 1}m → {0, 1}, which is defined as follows for each positive integer m:

IP2m(x, y) =
m⊕
i=1

xi · yi.

We rely on the following expander graph construction.

Proposition 5.1 (An expander contained in IP−1(0)). For every m ∈ N, there exists a regular undirected
multigraph H∗

2m = (V,E) on the vertex set V = {0, 1}m such that λ(H∗
2m) ≤ 5 · 2−m/2 and IP2m(x, y) = 0 for

every (x, y) ∈ E.

Proof. Let G be a graph on {0, 1}m in which (x, y) is an edge if and only if IP(x, y) = 0. Let A be the
adjacency matrix of G. This graph G is not regular, because 0m is connected to all other vertices. To fix
this, let H∗

2m be the graph with adjacency matrix A+∆, where

∆x,y =

−1 if PARITY(x) = PARITY(y) = 0 and 0m ∈ {x, y},
+1 if x = y and x ̸= 0m and PARITY(x) = 0,

0 otherwise.

The adjacency matrix A+∆ is nonnegative, because 0m ∈ {x, y} implies that IP(x, y) = 0. Furthermore,
H∗

2m is undirected, because ∆ and A are symmetric. Now we show that H is regular of degree D = 2m−1.
For the vertex x = 0m,

deg(x) =
∑

y∈{0,1}m
(Ax,y +∆x,y) =

∑
y∈{0,1}m

1 +
∑

y∈{0,1}m
PARITY(y)=0

−1 = 2m−1.

For a vertex x ̸= 0 and PARITY(x) = 0, we have

deg(x) =
∑

y∈{0,1}m
(Ax,y +∆x,y) = 2m−1 + 1− 1 = 2m−1.

Finally, for a vertex x such that PARITY(x) = 1, we have

deg(x) =
∑

y∈{0,1}m
(Ax,y +∆x,y) = 2m−1 + 0 = 2m−1.

We now move on to bounding λ(H∗
2m). Let M = 2m, and let 1 denote the all-ones column vector of

length M . By the definition of expansion parameter and triangle inequality,

λ(H∗
2m) = ∥H∗

2m − JM∥op =

∥∥∥∥A+∆

D
− 11T

M

∥∥∥∥
op

≤
∥∥∥∥AD − 11T

M

∥∥∥∥
op

+

∥∥∥∥∆D
∥∥∥∥
op

=
1

M
∥2A− 11T ∥op +

1

D
∥∆∥op.

Consider the first term. We claim that the matrix 2A− 11T is a Hadamard matrix. Indeed, each entry of
the matrix is given by

(2A− 11T)x,y = 1 − 2 IP(x, y) = (−1)⟨x,y⟩,

so the dot product of two distinct rows x, x′ ∈ {0, 1}m is given by∑
y∈{0,1}m

(−1)⟨x,y⟩ · (−1)⟨x
′,y⟩ =

∑
y∈{0,1}m

(−1)⟨x+x′, y⟩.

20

Since x+ x′ ̸= 0, the map y 7→ ⟨x+ x′, y⟩ mod 2 takes on equally many 0’s and 1’s as y varies; hence the
sum of (−1)⟨x+x′, y⟩ over all y is zero. Thus, 2A− 11T is a matrix with ±1 entries with mutually orthogonal
rows, i.e., a Hadamard matrix. It follows that ∥2A− 11T ∥op =

√
M , because each row has norm

√
M .

Now consider the second term, (1/D) · ∥∆∥op. For any unit vector π, the entries of π∆ are given by

(π∆)y =
∑
x

πx∆x,y =

−
∑

x:PARITY(x)=0 πx, if y = 0m,

πy − π0m , if y ̸= 0m and PARITY(y) = 0,

0, if PARITY(y) = 1.

Consequently,

∥π∆∥22 =

(∑
x∈{0,1}m

PARITY(x)=0

πx

)2

+
∑

y∈{0,1}m\{0m}
PARITY(y)=0

(πy − π0m)
2

≤ 2m−1
∑

x:PARITY(x)=0

π2
x + 2

∑
y ̸=0

PARITY(y)=0

(
π2
y + π2

0m
)

≤ 2m−1 · 1 + 2 · 1 + 2
(
2m−1 − 1

)
· 1

< 4M.

Thus ∥∆∥op ≤ 2
√
M , and so

λ(H) ≤ 1√
M

+
2 · 2 ·

√
M

M
= 5 ·M−1/2.

We can then prove Theorem 1.9:

Proof. To prove Item 1, recall that for any constant w, every generator in INW(λ) fools width-w standard-
order “permutation ROBPs” with error O(λ) [De11; Ste12; KNP11]. Every parity function can be computed
by a width-2 standard-order permutation ROBP, so it follows that every generator in INW(λ) is O(λ)-
biased. Finally, the XOR of any two λ-biased distributions fools quadratic polynomials over F2 with error
λ′ ≤ O(

√
λ) [BV10a; Lov09; Vio09].

Now let us prove Item 2. Let mj = 2j−1 for each j ∈ [log n]. Suppose λj ≥ 5 · 2−mj/2 for some j. In

this case, we will construct an INW(λ⃗) generator that does not hit IP2mj applied to the first 2mj bits of its
output. We use the following family of expanders:

H = (J2, J4, . . . , J2mj−1 , H∗
2mj , J∗, . . . , J∗).

Here H∗
2mj denotes the graph constructed in Proposition 5.1. By Proposition 5.1, this family H satisfies the

constraint λ⃗. Furthermore, for any output (x, y, z) ∈ {0, 1}mj × {0, 1}mj × {0, 1}n−2mj of INWH, we have
(x, y) ∈ E, and hence IP2mj (x, y) = 0 by Proposition 5.1.

The function IP2m is a quadratic polynomial over F2, and under the uniform distribution, we have
E[IP2m] = 1/2 · (1− 2−m), which is larger than 0.49 if m ≥ 6. Therefore, if we assume that INW(λ⃗) fools all
quadratic polynomials with error 0.49, then it follows that λj < 5 · 2−mj/2 < 2−mj/8 for all j ≥ 4.

Now we prove the seed length lower bound. Let H1, H2, . . . ,Hlogn be any family of undirected graphs,
where Hj is Dj-regular, Hj is on the vertex set [2]× [D1]× · · · × [Dj−1], and λ(Hj) ≤ λj . We will prove by
induction on j that log |Hj | ≥ 1

16 ·mj + 1 for every j ≥ 5. For the base case, note that trivially |H4| ≥ 2. By
Proposition 2.7, we have D4 ≥ min{1/(2 · λ2

4), (2 + 1)/2}. Both of those bounds are nontrivial, so D4 ≥ 2,

21

and hence |H5| ≥ 4, and hence log |H5| ≥ 2 = 1
16 ·m5 + 1. For the inductive step, we apply Proposition 2.7

again to get

log |Hj+1| = log |Hj |+ logDj ≥ min

{
log |Hj |+

1

4
·mj − 1, log |Hj |+ log |Hj | − 1

}
≥ min

{
1

16
·mj + 1 +

1

4
·mj − 1,

1

16
·mj + 1 +

1

16
·mj + 1− 1

}
≥ 1

16
·mj+1 + 1.

This completes the inductive step. Therefore, log |Hlogn| ≥ 1
16 ·mlogn + 1 ≥ Ω(n).

6 A case where using heavy-duty expanders is cheaper than XORing

In this section, we prove Theorem 1.10. Our distinguisher f will be a member of the following class.

Definition 6.1 (The class Fm,w,ℓ). For every m,w, ℓ ∈ N, we define Fm,w,ℓ to be the class of functions
f : ({0, 1}m × {0, 1}m)ℓ → {0, 1} of the form

f
(
(x(1), y(1)), . . . , (x(ℓ), y(ℓ))

)
= 1 ⇐⇒ ∀k ∈ [ℓ], h(x(k)) ̸= h(y(k)),

for some function h : {0, 1}m → [w].

Let us begin by showing that INW(λ) fools Fm,w,ℓ, provided ℓ is large enough and λ is small enough.

Lemma 6.2 (Functions in Fm,w,ℓ have low expectation under the INW generator). Let m and ℓ be powers
of two, let w ∈ N, and let λ ∈ (0, 1). For any function f ∈ Fm,w,ℓ and any PRG G : R → {0, 1}2mℓ such that
G ∈ INW(λ), we have

E[f(G(UR))] ≤ (1− 1/w)ℓ + λ · (w · ℓ+ ℓ− 1).

Proof. We will prove it by induction on ℓ. For the base case, suppose ℓ = 1. Then f has the form
f(x, y) = 1 ⇐⇒ h(x) ̸= h(y) for some h : {0, 1}m → [w]. We can write this function in the form

f(x, y) =
∑
u∈[w]

1[h(x) = u] · 1[h(y) ̸= u].

Any generator G ∈ INW(λ) has the form G(a, b) = (g(a), g(H[a, b])), where λ(H) ≤ λ. By the Expander
Mixing Lemma (Lemma 2.11), we have

Pr
a,b

[h(g(a)) = u ∧ h(g(H[a, b])) ̸= u] ≤ Pr
a,a′

[h(g(a)) = u ∧ h(g(a′)) ̸= u] + λ.

Therefore, by the triangle inequality,

E
a,b
[f(G(a, b))] ≤ E

a,a′
[f(g(a), g(a′))] + λ · w.

When we pick two seeds a and a′ independently, there is at least a 1/w chance that h(g(a)) = h(g(a′)),
simply because every probability distribution over [w] has collision probability at least 1/w. Therefore,

E
a,b
[f(G(a, b))] ≤ 1− 1/w + λ · w,

completing the base case.
Now, for the inductive step, suppose ℓ > 1. Then f has the form

f(x, y) = f1(x) · f2(y)

22

for some f1, f2 ∈ Fm,w,ℓ/2. Again, any generator G ∈ INW(λ) has the form G(a, b) = (g(a), g(H[a, b])) where
λ(H) ≤ λ and g ∈ INW(λ). By the Expander Mixing Lemma (Lemma 2.11), we have

E
a,b
[f(G(a, b))] ≤ E

a
[f1(g(a))] · E

a
[f2(g(a))] + λ.

Let p = (1− 1/w)ℓ/2 and ε = λ · (w · ℓ/2 + ℓ/2− 1). By induction, we have Ea[f1(g(a))] ≤ p+ ε. Similarly,
we have Ea[f2(g(a))] ≤ p+ ε, and we also trivially have Ea[f2(g(a))] ≤ 1. Therefore,

E
a,b
[f(G(a, b))] ≤ (p+ ε) ·min{p+ ε, 1}+ λ

≤ p · (p+ ε) + ε · 1 + λ

≤ p2 + 2ε+ λ

= p2 + λ · (w · ℓ+ ℓ− 2) + λ.

Now we move on to constructing an INW⊕t(λ) generator that does not fool Fm,w,ℓ. The construction is
based on the existence of an injective sum of small-bias generators:

Lemma 6.3 (Injective sum of small-bias generators). For every n ∈ N and δ ∈ (0, 1), there exist values
s > 2 log(1/δ)+log n and t = Ω(n/ log(n/δ)) and there exist δ-biased generators G1, . . . , Gt : {0, 1}s → {0, 1}n
such that the function G(x1, . . . , xt) := G1(x1)⊕ · · · ⊕Gt(xt) is injective.

Proof. Pick G1, . . . , Gt independently and uniformly at random from the set of all functions mapping {0, 1}s
to {0, 1}n. For any fixed i ∈ [t] and any fixed set S ⊆ [n], by Hoeffding’s inequality, the probability that G
does not fool the parity function on S with error δ/2 is at most 2 exp(−δ2 · 2s−1). Therefore, by the union
bound, the probability that some Gi is not δ-biased is at most

t · 2n+1 · exp(−δ2 · 2s−1).

Meanwhile, consider any fixed pair of distinct vectors (x1, . . . , xt), (y1, . . . , yt) ∈ {0, 1}st. Since the vectors
are distinct, there is some i such that xi ̸= yi; without loss of generality, assume i = 1. Observe that we have
a collision G(x1, . . . , xt) = G(y1, . . . , yt) if and only if

G1(x1)⊕G1(y1) = G2(x2)⊕G2(y2)⊕G3(x3)⊕G3(y3)⊕ · · · ⊕Gt(xt)⊕Gt(yt).

After sampling G2, . . . , Gt, the probability of the equation above with respect to the random choice of G1 is
precisely 2−n. Therefore, by the union bound, the probability that G is not injective is at most(

2st

2

)
· 2−n ≤ 22st−n.

To complete the proof, choose t = Ω(n/ log(n/δ)) and s = 2 log(1/δ) + log n+ log log t+O(1) in such a way
that

t · 2n+1 · exp(−δ2 · 2s−1) + 2st−n < 1.

(If δ is extremely small, then there is no positive integer t that is small enough to make the calculation above
work, but in this case we can simply let t = 1 and let G1 be the identity function on {0, 1}n.)

Now, using Lemma 6.3, let us construct an INW⊕t(λ) generator whose outputs are always accepted by a
certain Fm,w,ℓ function.

Proposition 6.4. Let λ ∈ (0, 1) and let m, ℓ be powers of two where m ≥ 8. There exists t = Ω(m/ log(m/λ)),
there exists a PRG G : R → {0, 1}2mℓ, there exists w ≤ 4/λ, and there exists f ∈ Fm,w,ℓ such that
G ∈ INW⊕t(λ) and f(G(x)) = 1 for every x ∈ R.

23

Proof. Let G1, . . . , Gt : {0, 1}s → {0, 1}m/2 be the λ-biased generators from Lemma 6.3, where s > 2 log(1/λ)+

log(m/2) and t = Ω(m/ log(m/λ)). LetHi = Cay(Fm/2
2 , Gi). Let w be a power of two in the interval [2/λ, 4/λ],

and note that logw ≤ s. Our INW⊕t(λ) generator is INW⊕t
H , where

H =

J2 J4 · · · J2m/4 H1 J∗ ⊗Kw J∗ J∗ · · · J∗
J2 J4 · · · J2m/4 H2 J∗ ⊗Kw J∗ J∗ · · · J∗
...

...
. . .

...
...

...
...

...
. . .

...
J2 J4 · · · J2m/4 Ht J∗ ⊗Kw J∗ J∗ · · · J∗

 .

This generator is indeed in INW⊕t(λ), because λ(Hi) ≤ λ (Lemma 2.6) and λ(Kw) = 1/(w−1) ≤ λ (Fact 2.4).
By construction, each output of this generator has the form(

t⊕
i=1

xi,1,
t⊕

i=1

(xi,1 ⊕Gi(zi,1)),
t⊕

i=1

xi,2,
t⊕

i=1

(xi,2 ⊕Gi(zi,2)), . . . ,
t⊕

i=1

xi,2ℓ,
t⊕

i=1

(xi,2ℓ ⊕Gi(zi,2ℓ))

)
,

where, whenever j is odd, the last logw bits of zi,j do not all agree with the last logw bits of zi,j+1.
By Lemma 6.3, there is some function R : {0, 1}m/2 → {0, 1}logw such that for every z1, . . . , zt ∈ {0, 1}s,

the output R(G1(z1)⊕ · · · ⊕Gt(zt)) consists of the last logw bits of z1. Now define h : {0, 1}m → {0, 1}logw
by

h(x, y) = R(x⊕ y),

and let f be the corresponding Fm,w,ℓ function:

f(x1, x2, . . . , x2ℓ) = 1 ⇐⇒ ∀k ∈ [ℓ], h(x2k−1) ̸= h(x2k).

By construction, f accepts every output of INW⊕t
H .

The final ingredient in the proof of Theorem 1.10 is the following seed length lower bound.

Lemma 6.5 (Seed length lower bound for INW(λ)). Let λ ∈ (2−n/32, 1/2), let n be a power of two, and let
G : R → {0, 1}n. If G ∈ INW(λ), then G has seed length at least

Ω

(
log(1/λ) · log

(
n

log(1/λ)

))
.

Proof. Let H1, . . . ,Hlogn be undirected multigraphs, where Hj is a Dj-regular graph on the vertex set
[2]× [D1]× · · · × [Dj−1] and λ(Hj) ≤ λ. By Proposition 2.7, we have Dj ≥ min{1/(2 · λ2), (|Hj |+ 1)/2}. Let
j∗ be the first value such that 1/λ2 < |Hj∗ |+ 1 (or j∗ = ∞ if no such value exists).

For 2 ≤ j ≤ j∗, we claim that log |Hj | ≥ 2j−2 + 1. Indeed, we start with |H1| = 2. If j∗ ≥ 2, then
D1 ≥ (2 + 1)/2, which implies log |H2| ≥ 2 = 22−2 + 1. From here, if j ≤ j∗, then |Hj+1| ≥ |Hj | · |Hj |/2, so
log |Hj+1| ≥ 2 log |Hj | − 1 ≥ 2 · (2j−2 + 1)− 1 = 2j−1 + 1.

This shows that log |Hj∗ | ≥ 2j∗−2 + 1, which shows that j∗ ≤ log log(1/λ) + 4. For all j ≥ j∗, we have
Dj ≥ 1/(2 · λ2). Consequently, the final seed length |Hlogn| is at least

(2 log(1/λ)− 1) · (log n− j∗) ≥ Ω

(
log(1/λ) · log

(
n

16 log(1/λ)

))
.

Proof of Theorem 1.10. Let ℓ be a power of two in the interval [19/λ, 38/λ], and let m = n/(2ℓ). Our
assumption λ ≥ 1000

n implies that m ≥ 8. Therefore, we may apply Proposition 6.4.
By Proposition 6.4, there exists t = Ω(λ · n/ log n), there exists G ∈ INW⊕t(λ), there exists w ≤ 4/λ,

and there exists f ∈ Fm,w,ℓ such that f(G(x)) = 1 for every x. On the other hand, by Lemma 6.2, the
expectation of f under any INW(λ′) generator is at most

(1− 1/w)ℓ + λ′ · (w + 1) · ℓ ≤ (1− λ/4)19/λ +O(λ′/λ2)

≤ exp(−19/4) +O(λ′/λ2)

< 0.01,

24

provided we choose λ′ ≤ cλ2 for a suitable constant c. In particular, taking λ′ = 0, we see that E[f] ≤ 0.01
under the uniform distribution. Consequently, G does not fool f with error 0.99, but every generator in
INW(cλ2) fools f with error 0.01. Finally, the seed length lower bound follows from Lemma 6.5.

We find it interesting that the proof of Theorem 1.10 is based on the existence of an injective sum of
small-bias generators (Lemma 6.3), whereas the proof of Theorem 1.8 is based on the existence of small-bias
distributions with a small sumset (Lemma 4.2). These two properties are essentially opposites, and yet each
is useful in its own way for establishing limitations of the INW⊕t generator.

7 Directions for future research

It would be very interesting to prove a general “XOR lemma” saying that taking the bitwise XOR of many
copies of a distribution amplifies its unpredictability for bounded-width ROBPs. Proving such a general
lemma might be the key to analyzing derandomized sums of INW generators.

There is a well-known variant of the INW generator in which we use an extractor to recycle the seed
at each stage instead of using an expander, i.e., the recursive step is Gj+1(x, y) = (Gj(x), Gj(Ext(x, y))).
This construction and its analysis are similar to the Nisan-Zuckerman PRG [NZ96]. Intriguingly, it is not
clear how to carry out the proof of Theorem 1.7 using extractors instead of expanders. Conceivably, an
extractor-based proof might be more amenable to derandomization.

We would also like to highlight the problem of determining the optimal dependence on w in Theorem 1.7.
Can the nlog(w+1) term be improved to poly(n,w)?

8 Acknowledgments

We thank Huacheng Yu for collaboration during the early stages of this project. We thank Gil Cohen and
Dean Doron for valuable discussions. We thank Aaron Potechin for valuable discussions and helpful comments
on a draft of this paper.

References

[AGHP92] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. “Simple constructions of almost
k-wise independent random variables”. In: Random Structures Algorithms 3.3 (1992), pp. 289–
304. issn: 1042-9832. doi: 10.1002/rsa.3240030308.

[AN21] Sepehr Assadi and Vishvajeet N. “Graph streaming lower bounds for parameter estimation
and property testing via a streaming XOR lemma”. In: Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing (STOC). 2021, pp. 612–625. doi: 10.1145/
3406325.3451110.

[Arm98] Roy Armoni. “On the Derandomization of Space-Bounded Computations”. In: Proceedings
of the 2nd Workshop on Randomization and Approximation Techniques in Computer Science
(RANDOM). 1998, pp. 47–59. doi: 10.1007/3-540-49543-6_5.

[BCG20] Mark Braverman, Gil Cohen, and Sumegha Garg. “Pseudorandom pseudo-distributions with
near-optimal error for read-once branching programs”. In: SIAM J. Comput. 49.5 (2020),
STOC18–242–STOC18–299. issn: 0097-5397. doi: 10.1137/18M1197734.

[BDVY13] Andrej Bogdanov, Zeev Dvir, Elad Verbin, and Amir Yehudayoff. “Pseudorandomness for
width-2 branching programs”. In: Theory Comput. 9 (2013), pp. 283–292. doi: 10.4086/toc.
2013.v009a007.

[BHPP22] Andrej Bogdanov, William M. Hoza, Gautam Prakriya, and Edward Pyne. “Hitting Sets
for Regular Branching Programs”. In: Proceedings of the 37th Computational Complexity
Conference (CCC). 2022, 3:1–3:22. doi: 10.4230/LIPIcs.CCC.2022.3.

25

https://doi.org/10.1002/rsa.3240030308
https://doi.org/10.1145/3406325.3451110
https://doi.org/10.1145/3406325.3451110
https://doi.org/10.1007/3-540-49543-6_5
https://doi.org/10.1137/18M1197734
https://doi.org/10.4086/toc.2013.v009a007
https://doi.org/10.4086/toc.2013.v009a007
https://doi.org/10.4230/LIPIcs.CCC.2022.3

[BRRY14] Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudayoff. “Pseudorandom generators for
regular branching programs”. In: SIAM J. Comput. 43.3 (2014), pp. 973–986. issn: 0097-5397.
doi: 10.1137/120875673. url: https://doi.org/10.1137/120875673.

[BV10a] Andrej Bogdanov and Emanuele Viola. “Pseudorandom Bits for Polynomials”. In: SIAM J.
Comput. 39.6 (Apr. 2010), 2464–2486. issn: 0097-5397. doi: 10.1137/070712109.

[BV10b] Joshua Brody and Elad Verbin. “The Coin Problem and Pseudorandomness for Branching
Programs”. In: 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.
2010, pp. 30–39. doi: 10.1109/FOCS.2010.10.

[CDRST21] Gil Cohen, Dean Doron, Oren Renard, Ori Sberlo, and Amnon Ta-Shma. “Error Reduction
for Weighted PRGs Against Read Once Branching Programs”. In: Proceedings of the 36th
Computational Complexity Conference (CCC). 2021, 22:1–22:17. doi: 10.4230/LIPIcs.CCC.
2021.22.

[CHLTW23] Lijie Chen, William M. Hoza, Xin Lyu, Avishay Tal, and Hongxun Wu. “Weighted pseudoran-
dom generators via inverse analysis of random walks and shortcutting”. In: Proceedings of the
64th Annual Symposium on Foundations of Computer Science (FOCS). 2023, pp. 1224–1239.
doi: 10.1109/FOCS57990.2023.00072.

[CL21] Lijie Chen and Xin Lyu. “Inverse-exponential correlation bounds and extremely rigid matrices
from a new derandomized XOR lemma”. In: Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing (STOC). 2021, pp. 761–771. doi: 10.1145/3406325.
3451132.

[CL24] Eshan Chattopadhyay and Jyun-Jie Liao. “Recursive Error Reduction for Regular Branching
Programs”. In: 15th Innovations in Theoretical Computer Science Conference (ITCS). 2024,
29:1–29:20. doi: 10.4230/LIPIcs.ITCS.2024.29.

[CW25] Kuan Cheng and Ruiyang Wu. Weighted Pseudorandom Generators for Read-Once Branching
Programs via Weighted Pseudorandom Reductions. 2025. arXiv: 2502.08272 [cs.CC].

[De11] Anindya De. “Pseudorandomness for Permutation and Regular Branching Programs”. In:
Proceedings of the 2011 IEEE 26th Annual Conference on Computational Complexity. CCC
’11. USA: IEEE Computer Society, 2011, 221–231. isbn: 9780769544113. doi: 10.1109/CCC.
2011.23. url: https://doi.org/10.1109/CCC.2011.23.

[FK18] Michael A. Forbes and Zander Kelley. “Pseudorandom generators for read-once branching
programs, in any order”. In: Proceedings of the 59th Annual IEEE Symposium on Foundations
of Computer Science (FOCS). 2018, pp. 946–955. doi: 10.1109/FOCS.2018.00093.

[FSUV13] Bill Fefferman, Ronen Shaltiel, Christopher Umans, and Emanuele Viola. “On beating the
hybrid argument”. In: Theory Comput. 9 (2013), pp. 809–843. doi: 10.4086/toc.2013.
v009a026.

[GR14] Anat Ganor and Ran Raz. “Space Pseudorandom Generators by Communication Complexity
Lower Bounds”. In: Approximation, Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques (APPROX/RANDOM 2014). Ed. by Klaus Jansen, José Rolim,
Nikhil R. Devanur, and Cristopher Moore. Vol. 28. Leibniz International Proceedings in Infor-
matics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2014,
pp. 692–703. isbn: 978-3-939897-74-3. doi: 10.4230/LIPIcs.APPROX-RANDOM.2014.692.

[HH24] Pooya Hatami and William Hoza. “Paradigms for unconditional pseudorandom generators”.
In: Found. Trends Theor. Comput. Sci. 16.1-2 (2024), pp. 1–210. issn: 1551-305X. doi:
10.1561/0400000109.

[Hoz21] William M. Hoza. “Better Pseudodistributions and Derandomization for Space-Bounded
Computation”. In: Proceedings of the 25th International Conference on Randomization and
Computation (RANDOM). 2021, 28:1–28:23. doi: 10.4230/LIPIcs.APPROX/RANDOM.2021.28.

26

https://doi.org/10.1137/120875673
https://doi.org/10.1137/120875673
https://doi.org/10.1137/070712109
https://doi.org/10.1109/FOCS.2010.10
https://doi.org/10.4230/LIPIcs.CCC.2021.22
https://doi.org/10.4230/LIPIcs.CCC.2021.22
https://doi.org/10.1109/FOCS57990.2023.00072
https://doi.org/10.1145/3406325.3451132
https://doi.org/10.1145/3406325.3451132
https://doi.org/10.4230/LIPIcs.ITCS.2024.29
https://arxiv.org/abs/2502.08272
https://doi.org/10.1109/CCC.2011.23
https://doi.org/10.1109/CCC.2011.23
https://doi.org/10.1109/CCC.2011.23
https://doi.org/10.1109/FOCS.2018.00093
https://doi.org/10.4086/toc.2013.v009a026
https://doi.org/10.4086/toc.2013.v009a026
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.692
https://doi.org/10.1561/0400000109
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.28

[HPV21] William M. Hoza, Edward Pyne, and Salil Vadhan. “Pseudorandom Generators for Unbounded-
Width Permutation Branching Programs”. In: 12th Innovations in Theoretical Computer
Science Conference (ITCS). 2021, 7:1–7:20. doi: 10.4230/LIPIcs.ITCS.2021.7.

[HPV24] William M. Hoza, Edward Pyne, and Salil Vadhan. “Limitations of the Impagli-
azzo–Nisan–Wigderson pseudorandom generator against permutation branching programs.” eng.
In: Algorithmica 2024 (2024). url: https://link.springer.com/article/10.1007/s00453-
024-01251-2.

[HZ20] William M. Hoza and David Zuckerman. “Simple optimal hitting sets for small-success RL”.
In: SIAM J. Comput. 49.4 (2020), pp. 811–820. issn: 0097-5397. doi: 10.1137/19M1268707.

[Imp95] Russell Impagliazzo. “Hard-core distributions for somewhat hard problems”. In: Proceedings of
the 36th Annual Symposium on Foundations of Computer Science (FOCS). 1995, pp. 538–545.
doi: 10.1109/SFCS.1995.492584.

[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. “Pseudorandomness for network
algorithms”. In: Proceedings of the 26th Annual Symposium on Theory of Computing (STOC).
1994, 356–364. doi: 10.1145/195058.195190.

[IW97] Russell Impagliazzo and Avi Wigderson. “P = BPP if E requires exponential circuits: deran-
domizing the XOR lemma”. In: Proceedings of the 29th Annual ACM Symposium on Theory
of Computing (STOC). 1997, 220–229. isbn: 0897918886. doi: 10.1145/258533.258590.

[KNP11] Michal Koucký, Prajakta Nimbhorkar, and Pavel Pudlák. “Pseudorandom generators for group
products: extended abstract”. In: Proceedings of the Forty-Third Annual ACM Symposium
on Theory of Computing. STOC ’11. San Jose, California, USA: Association for Computing
Machinery, 2011, 263–272. isbn: 9781450306911. doi: 10.1145/1993636.1993672. url:
https://doi.org/10.1145/1993636.1993672.

[Kum25] Vinayak Kumar. “New Pseudorandom Generators and Correlation Bounds Using Extractors”.
In: Electronic Colloquium on Computational Complexity (ECCC) TR25-002 (2025). url:
https://eccc.weizmann.ac.il/report/2025/002/.

[Lov09] Shachar Lovett. “Unconditional Pseudorandom Generators for Low-Degree Polynomials”. In:
Theory of Computing 5.3 (2009), pp. 69–82. doi: 10.4086/toc.2009.v005a003.

[LPV23] Chin Ho Lee, Edward Pyne, and Salil Vadhan. “On the Power of Regular and Permutation
Branching Programs”. In: Proceedings of the 27th International Conference on Randomization
and Computation (RANDOM). 2023, 44:1–44:22. doi: 10.4230/LIPIcs.APPROX/RANDOM.
2023.44.

[LT09] Shachar Lovett and Yoav Tzur. “Explicit lower bound for fooling polynomials by the sum
of small-bias generators”. In: Electronic Colloquium on Computational Complexity (ECCC)
TR09-088 (2009). url: https://eccc.weizmann.ac.il/report/2009/088/.

[LV17] Chin Ho Lee and Emanuele Viola. “Some Limitations of the Sum of Small-Bias Distributions”.
In: Theory of Computing 13.16 (2017), pp. 1–23. doi: 10.4086/toc.2017.v013a016.

[MRT19] Raghu Meka, Omer Reingold, and Avishay Tal. “Pseudorandom generators for width-3 branch-
ing programs”. In: Proceedings of the 51st Annual Symposium on Theory of Computing (STOC).
2019, pp. 626–637. doi: 10.1145/3313276.3316319.

[MT09] Ueli Maurer and Stefano Tessaro. “Computational indistinguishability amplification: tight
product theorems for system composition”. In: Proceedings of the 29th International Cryptology
Conference (CRYPTO). 2009, pp. 355–373. doi: 10.1007/978-3-642-03356-8_21.

[MZ09] Raghu Meka and David Zuckerman. “Small-bias spaces for group products”. In: Proceedings
of the 13th International Workshop on Randomization and Computation (RANDOM). 2009,
pp. 658–672. doi: 10.1007/978-3-642-03685-9_49.

27

https://doi.org/10.4230/LIPIcs.ITCS.2021.7
https://link.springer.com/article/10.1007/s00453-024-01251-2
https://link.springer.com/article/10.1007/s00453-024-01251-2
https://doi.org/10.1137/19M1268707
https://doi.org/10.1109/SFCS.1995.492584
https://doi.org/10.1145/195058.195190
https://doi.org/10.1145/258533.258590
https://doi.org/10.1145/1993636.1993672
https://doi.org/10.1145/1993636.1993672
https://eccc.weizmann.ac.il/report/2025/002/
https://doi.org/10.4086/toc.2009.v005a003
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.44
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.44
https://eccc.weizmann.ac.il/report/2009/088/
https://doi.org/10.4086/toc.2017.v013a016
https://doi.org/10.1145/3313276.3316319
https://doi.org/10.1007/978-3-642-03356-8_21
https://doi.org/10.1007/978-3-642-03685-9_49

[Nis92] Noam Nisan. “Pseudorandom generators for space-bounded computation”. In: Combinatorica
12.4 (1992), pp. 449–461. issn: 0209-9683. doi: 10.1007/BF01305237.

[NN93] Joseph Naor and Moni Naor. “Small-bias probability spaces: efficient constructions and
applications”. In: SIAM J. Comput. 22.4 (1993), pp. 838–856. issn: 0097-5397. doi: 10.1137/
0222053. url: https://doi.org/10.1137/0222053.

[NZ96] Noam Nisan and David Zuckerman. “Randomness is linear in space”. In: J. Comput. System
Sci. 52.1 (1996), pp. 43–52. issn: 0022-0000. doi: 10.1006/jcss.1996.0004.

[PV21] Edward Pyne and Salil Vadhan. “Pseudodistributions That Beat All Pseudorandom Generators
(Extended Abstract)”. In: Proceedings of the 36th Computational Complexity Conference (CCC).
2021, 33:1–33:15. doi: 10.4230/LIPIcs.CCC.2021.33.

[Rei08] Omer Reingold. “Undirected connectivity in log-space”. In: J. ACM 55.4 (2008), Art. 17, 24.
issn: 0004-5411. doi: 10.1145/1391289.1391291.

[RR99] Ran Raz and Omer Reingold. “On recycling the randomness of states in space bounded
computation”. In: The 31st Annual ACM Symposium on Theory of Computing (STOC). 1999,
pp. 159–168. doi: 10.1145/301250.301294.

[RV05] Eyal Rozenman and Salil Vadhan. “Derandomized squaring of graphs”. In: Proceedings of the
9th International Workshop on Randomization and Computation (RANDOM). 2005, pp. 436–
447. doi: 10.1007/11538462_37.

[Shp09] Amir Shpilka. “Constructions of Low-degree and Error-Correcting ε-Biased Generators”. In:
Computational Complexity 18.4 (2009), p. 495. issn: 1420-8954. doi: 10.1007/s00037-009-
0281-5. url: https://doi.org/10.1007/s00037-009-0281-5.

[Ste12] Thomas Steinke. “Pseudorandomness for Permutation Branching Programs Without the Group
Theory”. In: Electronic Colloquium on Computational Complexity (ECCC) TR12-083 (2012).
Published: 2nd July 2012 15:57. url: https://eccc.weizmann.ac.il/report/2012/083/.

[SZ95] Michael Saks and David Zuckerman. Unpublished. 1995.

[Tzu09] Yoav Tzur. “Notions of Weak Pseudorandomness and GF (2n)-Polynomials”. M.Sc. thesis.
Weizmann Institute of Science, 2009. url: https://eccc.weizmann.ac.il/static/books/
Notions_of_Weak_Pseudorandomness/.

[Vad12] Salil P. Vadhan. “Pseudorandomness”. In: Foundations and Trends in Theoretical Computer
Science 7.1–3 (2012), pp. 1–336. issn: 1551-305X. doi: 10.1561/0400000010.

[Vio09] Emanuele Viola. “The sum of d small-bias generators fools polynomials of degree d”. In: Comput.
Complexity 18.2 (2009), pp. 209–217. issn: 1016-3328. doi: 10.1007/s00037-009-0273-5.

A The GV bound for linear binary codes

Proof of Theorem 2.16. Let δ = k/m. Let r be any integer with r ≤ (1 − H(δ))m. We show by the
probabilistic method that there is a binary linear code of block length m, dimension at least r, and minimum
distance at least k + 1. Indeed, pick a generator matrix M ∈ Fm×r

2 uniformly at random, i.e. each of the mr
entries of M is chosen independently to be 0 or 1 with probability 1/2. This M defines a linear code

C = {Mx : x ∈ Fr
2}.

We want to ensure that no nonzero message x is mapped to a codewordMx with Hamming weight wt(Mx) ≤ k,
so that wt(Mx) ≥ k + 1 for every x ̸= 0.

Fix a nonzero message x ∈ Fr
2. Since M was chosen at random, Mx is uniformly distributed in Fm

2 . Thus

Pr
M

[
wt(Mx) ≤ k

]
=

∣∣{y ∈ Fm
2 : wt(y) ≤ k}

∣∣
2m

.

28

https://doi.org/10.1007/BF01305237
https://doi.org/10.1137/0222053
https://doi.org/10.1137/0222053
https://doi.org/10.1137/0222053
https://doi.org/10.1006/jcss.1996.0004
https://doi.org/10.4230/LIPIcs.CCC.2021.33
https://doi.org/10.1145/1391289.1391291
https://doi.org/10.1145/301250.301294
https://doi.org/10.1007/11538462_37
https://doi.org/10.1007/s00037-009-0281-5
https://doi.org/10.1007/s00037-009-0281-5
https://doi.org/10.1007/s00037-009-0281-5
https://eccc.weizmann.ac.il/report/2012/083/
https://eccc.weizmann.ac.il/static/books/Notions_of_Weak_Pseudorandomness/
https://eccc.weizmann.ac.il/static/books/Notions_of_Weak_Pseudorandomness/
https://doi.org/10.1561/0400000010
https://doi.org/10.1007/s00037-009-0273-5

The number of y ∈ Fm
2 with wt(y) ≤ k can be bounded above by

k∑
i=0

(
m

i

)
≤ 2mH(δ).

Hence
Pr
M

[
wt(Mx) ≤ k

]
≤ 2−m 2mH(δ) = 2−m(1−H(δ)).

Next, apply the union bound over all nonzero messages x ∈ Fr
2 \ {0}. There are 2r − 1 such messages, so

Pr
M

[
∃x ̸= 0 with wt(Mx) ≤ k

]
≤ (2r − 1) 2−m(1−H(δ)).

Since r ≤ (1−H(δ))m, we have 2r ≤ 2m(1−H(δ)). It follows that the above probability is at most(
2r − 1

)
2−m(1−H(δ)) < 1.

Hence there is at least one choice of M (one generator matrix) under which every nonzero message maps to a
codeword with weight greater than k. In other words, that choice of M generates a linear code of dimension
r whose minimum (Hamming) distance is at least k + 1. Since r was any integer up to ⌊(1−H(δ))m⌋, the
theorem is proved.

29

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

